Validation of satellite-derived cloud physical and microphysical properties with aircraft measurements from TC4

C. R. Yost¹, P. Minnis², D. A. Spangenberg¹, R. Palikonda¹, S. J. Houser¹, M. J. McGill³, D. L. Hlavka³, A. Heymsfield⁴, and A. Bansemer⁴

¹Science Systems and Applications, Inc. (SSAI), Hampton, VA

²NASA Langley Research Center, Hampton, VA

³NASA Goddard Space Flight Center, Greenbelt, MD

⁴National Center for Atmospheric Research, Boulder, CO

Tropical Composition, Clouds, and Climate Coupling
Experiment Science Team Meeting
Virginia Beach, VA
26 February, 2008

Outline

- Focus is on ice-phase clouds
- Estimating cloud top height (z_{top}) from passive satellite observations
 - Comparisons with the CPL (McGill et al. 2002)
 - Theoretical RT calcs
- Estimating ice water path (*IWP*) and ice particle size (D_e)
 - Case studies from TC4
 - Particle size distributions and ice water content from the Cloud Imaging Probe (CIP; Heymsfield and Bansemer)

Satellite Cloud Products

- Visible Infrared Solar-Infrared Split Window Technique (VISST), Minnis et al. 1998
 - Used to determine cloud phase, top height, etc. during TC4
 - Run on GOES-12, Terra-MODIS, and Aqua-MODIS data
 - Spatial resolution of cloud products
 - GOES 4 km
 - MODIS 2 km

- Cloud tops from the Cloud Physics Lidar (CPL) on the ER-2
- VISST underestimates the observed physical top of optically thick ice clouds
- Good correlation with the level at which the lidar totally attenuates
- Optical depth of layer above VISST z_{top} is ≈ 3

- GOES-12 tops underestimated by ~ 2 km on average
- MODIS underestimated by < 1 km
- Similar results with CALIPSO

- Difference between VISST z_{top} and true z_{top} depends on the *IWC* profile near the cloud top
- Sharp boundaries only for the densest clouds

- Forward RT calcs from DISORT (Stamnes et al., 1988)
 - IWC, 0.01 0.50 g m⁻³
 - 4 viewing angles
 - 3 effective sizes
 - $z_{top} = 13$ km, $T_{top} = 215$ K
- Calculate T_{11} at the TOA
- IWC profile can strongly influence the T_{11} observed from space

- Applied correction based on a month of CALIPSO data
 - Linear least-squares fit
 - Small correction for viewing angle
 - Use tropopause height as an upper limit
 - Use D_e to constrain solution and reduce scatter?
- Mean difference reduced for both GOES and MODIS

- 3 August, deep convective cloud case
 - DC-8 (red track) made a spiral descent through the cloud
 - CIP sampled ice water content and crystal size
- Useful for validating satellite retrievals of ice water path

3 August, 2007

- Integrated the in-situ IWC over the depth of the cloud
- VISST obtained IWP of 312 g m⁻²
 - Difference of 13%
- Very low IWC near cloud top

• 24 July, deep convective cloud case

- 24 July, deep convective cloud case
 - Inferred *IWP* from CIP: 1138 g m⁻²
 - *IWP* from VISST: 1397 g m⁻²
 - 23% difference

- No *IWC* profile from 14:44 14:50 UTC
 - DC-8 flew through clear sky during this leg of the flight
 - Inferred *IWP* from CIP: 1138 g m⁻²
 - IWP from VISST: 1397 g m⁻²
 - IWC in mid layers of the cloud might make up the difference

Particle Size

- Back to 3 August spiral descent case
 - Ice particle size distributions from CIP on the DC-8
 - Integrated over the size distributions assuming hexagonal columns to get D_e
 - Good agreement in the top 500 m
 - Inferred D_e from CIP: 112 μ m
 - D_e from VISST: 116 μ m

Particle Size

- Back to 3 August spiral descent case
 - Ice particle size distributions from CIP on the DC-8
 - Integrated over the size distributions assuming hexagonal columns to get D_e
 - Good agreement in the top 500 m
 - Inferred D_e from CIP: 112 μ m
 - D_e from VISST: 116 μ m

Particle Size

- 8 August, ER-2 and DC-8 made a coordinated flight
 - Trends of D_e very similar
 - Best agreement when DC-8 flew near the cloud top

Summary

- Instruments during the TC4 campaign provided measurements of several quantities that we can use to validate satellite cloud products
 - Cloud tops directly from the CPL
 - *IWP* inferred from *IWC* from CIP and cloud physical depth
 - D_e inferred from particle size distributions from CIP
- Correction for thick ice cloud tops based on CALIPSO comparisons
- Initial comparisons of *IWP* look promising
 - Need more spiral ascents/descents for further investigation
- Time series of particle sizes follow the same trends and values agree best near cloud top

