Validation of GOES-8 Derived Cloud Properties Over the Southeastern Pacific

J. K. Ayers¹, P. Minnis², R. Wood³, P.W. Heck¹, D. F. Young², W. L. Smith, Jr.², C. W. Fairall⁴, T. Uttal⁴

1 Analytical Services and Materials, Inc, Hampton, VA
2 NASA Langley Research Center, Atmospheric Sciences, Hampton, VA
3 Atmospheric Sciences, University of Washington, Seattle, WA
4 NOAA ETL, Boulder, CO

Outline

- Introduction
- Cloud Property Retrieval
 - VISST/SIST Methodology
 - Required Inputs
- Sample Cloud Properties
 - Hourly
 - Pixel Level, Gridded
 - Monthly
 - Gridded
- Validation
 - Tc, Zc, τ , r_e , LWP
- Conclusions
- Future Work

Introduction

Why do we need satellite cloud products?

- Very important climatic region
 - ITCZ
 - Stratocumulus region
 - Southern hemispheric storm track
- Region is vast and in-situ measurements are limited
- Satellite cloud products are the only way to get near continuous coverage of the entire region

Why do we need validation?

- Without validation satellite products are suspect
- Provides means for correcting and proving algorithms

Methodology

Visible Infrared Solar-Infrared Split Window Technique (VISST)

- Daytime
- 0.65, 3.9, 10.8, 12.0 μm channels
- Utilizes parameterization of theoretical radiance calculations for 7
 water and 9 ice crystal size distributions
- Retrieves cloud optical properties by matching calculations to observations

Solar-Infrared Infrared Split Window Technique (SIST)

- Night
- 3.9, 10.8, 12.0 µm channels
- Minimum error, iterative regression method
- Retrieves cloud optical properties by matching calculations to observations

Required Inputs

- Soundings from model runs or in-situ measurements
- Surface characterization from IGBP 10 minute map
- Uses CERES cloud mask algorithm
- Clear sky reflectances from CERES & GOES-based ocean model
- Narrowband to Broadband flux conversion functions from GOES-ERBE
- Satellite data (GOES-8, GOES-10) 4-km pixel resolution

AGU 2002 Fall Meeting

Sample Products - Hourly Pixel Level (11/01/99, 14:45 UTC)

Cloud Height

Effective Droplet Radius

6

AGU 2002 Fall Meeting

Monthly Gridded Cloud Fractions (1°)

Validation

VISST/SIST

- Analysis for a 1° box centered on the ship
- Solar zenith angle restricted to 82° or less
- Cloud limited to a single phase in most cases
- Appropriate properties adjusted by cloud fraction

• Fall 2000

- 20 minute average centered on satellite image time
- Fall 2001
 - 60 minute average centered on image time
 - 20 minute average centered on satellite image time (Cloud Height)

Fall 2000

Comparison of Satellite and Ceilometer Cloud Fraction (Fall 2000 Cruise)

	VISST					
Ceilometer	0-20	20-40	40-60	60-80	80-100	
0-20	20	5	3	0	0	
20-40	1	1	2	2	0	
40-60	2	3	3	1	3	
60-80	0	1	1	2	3	
80-100	2	3	2	2	47	

Cmean = 64.3%, Vmean = 60.4%, StDev = 24%

Comparison of Radar and VISST Derived Cloud Heights (Fall 2000)

Fall 2001

Cloud Height Comparison

Cloud Fraction Comparison

	VISST						
Ceilometer	0-20	20-40	40-60	60-80	80-100		
0-20	1	0	0	0	0		
20-40	0	0	0	0	0		
40-60	0	2	2	0	0		
60-80	0	0	2	2	2		
80-100	0	0	3	3	60		

Cmean = 92.6%, Vmean = 84.3%, StDev = 12%

Cloud Temperature Comparison

Optical Depth Comparison

Liquid Water Path Comparison

Effective Radius Timeline

Effective Droplet Radius Comparison

Conclusions

- Cloud amounts in good agreement, need to explore cases of poor agreement
- Cloud heights are as good as we can expect, some issues with overlap
- Diurnal cycles for all parameters show good agreement
- Magnitude of re differences in question

Future Work

- Explore cases of bad agreement for cloud amount
- Compare nocturnal cloud amount and heights
- Examine re differences more closely
- Evaluate microwave LWP using different techniques and compare with SSMI and TMI (on TRMM)
- Compare TOA albedos from VISST and surface with CERES instrument on TERRA
- Compute average lapse rate for each cruise to determine if a change in cloud height determination method is needed
- Continue producing products for the domain, implement improvements from comparisons

