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Abstract 

The threat for aircraft icing in clouds is a significant hazard that routinely impacts aviation 

operations. Accurate diagnoses and forecasts of aircraft icing conditions requires identifying the 

location and vertical distribution of clouds with super-cooled liquid water (SLW) droplets, as 

well as the characteristics of the droplet size distribution. Traditional forecasting methods rely on 

guidance from numerical models and conventional observations, neither of which currently 

resolve cloud properties adequately on the optimal scales needed for aviation.  Satellite imagers 

provide measurements over large areas with high spatial resolution that can be interpreted to 

identify the locations and characteristics of clouds, including features associated with adverse 

weather and storms.  This thesis develops new techniques for interpreting cloud products derived 

from satellite data to infer the flight icing threat to aircraft. For unobscured low clouds, the icing 

threat is determined using empirical relationships developed from correlations between satellite 

imager retrievals of liquid water path and droplet size with icing conditions reported by pilots 

(PIREPS).  For deep ice over water cloud systems, ice and liquid water content (IWC and LWC) 

profiles are derived by using the imager cloud properties to constrain climatological information 

on cloud vertical structure and water phase obtained apriori from radar and lidar observations, 

and from cloud model analyses. Retrievals of the SLW content embedded within overlapping 

clouds are mapped to the icing threat using guidance from an airfoil modeling study. Compared 

to PIREPS and ground-based icing remote sensing datasets, the satellite icing detection and 

intensity accuracies are approximately 90% and 70%, respectively. The satellite-derived icing 

boundaries capture the reported altitudes over 90% of the time. Mean differences between the 

imager IWC retrievals with those derived from CloudSat and CALIPSO profiling data are less 

than 30% for a wide range of cloud conditions. This level of closure in the cloud water budget 
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can only be achieved by correcting for errors in the imager retrievals due to the simplifying but 

poor assumption that deep optically thick clouds are single-phase and vertically homogeneous. 

When applied to geostationary satellite data, the profiling method provides a real-time 

characterization of clouds in 4-D. This research should improve the utility of satellite imager 

data for quantitatively diagnosing and predicting clouds and their effects in weather and climate 

applications.  
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1 Introduction 

 Clouds influence the dynamics and thermodynamics of the atmosphere and thus affect the 

weather and climate of the Earth in many ways. They modulate the flow of solar and thermal 

energy, which impacts local air temperatures, they influence large-scale circulations through the 

release of latent heat, and they play a critical role in the overall balance of the Earth’s energy 

budget (Ramanathan et al., 1989; Stephens 2005). Clouds are a key element in the hydrologic 

cycle (e.g., Stephens 2006), producing precipitation to transport fresh water to the surface. They 

are often associated with adverse weather conditions that can be disruptive and even dangerous 

to human life. Because of their profound influence, an accurate representation of clouds is 

needed in order to accurately predict the weather and climate with numerical models (Tripoli and 

Cotton 1982; Cess et al., 1989). Observing clouds with in-situ sensors (e.g., Baumgardner 1983; 

Twohy et al., 1987; Baumgardner et al., 2002; Baker and Lawson 2006), ground-based remote 

sensors (e.g., Sassen 1991; Matrosov et al., 1992; Clothiaux et al., 1995, 2000; Mace et al. 1998) 

and satellite remote sensing systems (e.g., Menzel et al., 1994; Barnes et al., 1998; Stephens et 

al., 2002; Winker et al., 2002), all contribute to an understanding of the composition and 

distribution of clouds in the atmosphere. Current satellite data provide a wealth of global cloud-

related information (e.g., Rossow and Schiffer 1991; Minnis et al., 1995 and 2011b;  Han et al., 

1998; King et al. 2003; Bennartz 2007; Mace et al., 2009; Stephens et al., 2008). Increased 

computer power is allowing for more advanced representations of clouds in numerical models 

(e.g., Meyers et al., 1995; Reisner at al., 1998; Thompson et al., 2004; Hashino and Tripoli, 

2007) and an improved understanding of cloud processes.  

 Despite these important advances, many challenges remain in adequately characterizing 

clouds and their effects in numerical weather analyses and forecast models from both a 
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theoretical and practical standpoint (e.g., Khain et al., 2000; Errico et al., 2007). In general, this 

is due to a number of factors, including; (1) the microphysical processes of formation and 

growth, and the interaction of aerosols, liquid and ice hydrometeors is poorly understood in 

certain conditions, (2) the mathematical formulations or parameterizations used to describe these 

complex processes in models and relate them to dynamic air motions are inadequate, and (3) the 

3-dimensional distribution of cloud hydrometeors in the atmosphere are poorly observed and not 

accurately prescribed in model initial conditions.  

 Satellite imager data taken from scanning passive radiometric sensors flown on operational 

weather and other research satellites can help address the last factor. Satellites are the only 

observing platform with the capability to observe characteristics of the Earth and atmosphere 

over large areas and at the spatial and temporal scales needed by many weather related 

applications.  Under many conditions, observations from satellite imagers offer the ability to 

accurately detect the location of clouds (Ackerman et al., 1998; Minnis et al., 2008a) and 

estimate their altitudes (Smith and Platt, 1978; Holz et al., 2008; Smith et al., 2008; Minnis et al., 

2008c), optical and macro-physical properties (Nakajima and King, 1990; Minnis et al., 1995; 

King et al., 1997; Minnis et al., 2011b). These techniques were largely pioneered in the United 

States and developed under the auspices of satellite programs designed to monitor and improve 

our understanding of clouds on the Earth’s climate. Despite the vast amount of work and 

resources expended in developing cloud property retrievals from imager data, they remain 

underutilized, particularly in weather applications and decision support systems (DSS).  

 A major objective of this dissertation is to demonstrate that satellite-derived cloud products 

can and should play a more important role in weather applications and DSS. This is 

accomplished by developing new methods that utilize operational satellite cloud retrievals to 
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improve the instantaneous resolution of cloud vertical structure and to estimate the flight icing 

threat to aircraft in a wide range of cloud conditions. This document is organized in the 

following way.  The motivation and objectives for this work are discussed in Section 2. Section 3 

describes the models and data used in this study.  In Section 4, satellite-derived cloud properties 

are compared to cloud properties derived in an advanced mesoscale numerical modeling system. 

The comparisons are meant to illustrate some of the outstanding issues associated with models 

and observations, and to highlight the potential benefits for satellite cloud retrievals in weather 

applications. In section 5, a cloud water content profiling capability is developed. Section 6 

describes a series of algorithms developed to estimate the flight icing threat to aircraft using 

satellite cloud retrievals as the primary inputs.  The key findings and potential implications are 

summarized in Section 7 along with suggestions for future work needed to refine the methods. 

2 Motivation and Objectives 

 This dissertation is partially motivated by the fact that despite the vast amount of work and 

resources expended in developing cloud property retrievals from imager data for climate 

applications, they remain underutilized in weather applications and DSS. An example of such a 

system is the 4-D weather cube, a concept in development for the Next Generation 

Transportation System (NextGen). Accurate diagnoses and predictions of clouds and associated 

weather conditions are urgently needed by the transportation industry, particularly aviation, in 

order to improve operational safety and efficiency. Adverse weather accounts for nearly 70% of 

all air traffic delays within the U.S. National Airspace System (Bureau of Transportation 

Statistics). The Federal Aviation Administration (FAA) has determined that as much as two 

thirds of weather-related delays are potentially avoidable with better weather information and 

roughly 20% of all aviation accidents are weather related (FAA NASDAC). The concept of a 4-
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D weather cube is being developed to address that need by integrating observed and forecasted 

weather information into a shared 4-D database, providing an integrated and nationally 

consistent weather picture for a variety of users and to support operational decision support 

systems. However, satellite data are currently only slated to play a rudimentary role with respect 

to characterizing clouds and their impacts, both directly via specific applications and indirectly 

via improved numerical cloud analyses.  Participation by the satellite community in developing 

the 4-D cube is also largely void.  There are a few possible reasons for this.  First, many routine 

satellite derived products are not considered to be ‘operational’ since they do not meet some pre-

determined availability criteria set by program managers for use in DSS. The criteria seem to 

vary from program to program.  For example, products that are approved for operational use by 

the National Weather Service (NWS), are not approved for use by the FAA (Marcia Politovitch, 

UCAR, personal communication). Second, while satellite data have long been recognized for 

their utility in observing the horizontal and temporal distribution of clouds, their utility for 

describing quantitatively, or constraining, the vertical distribution of cloud properties has not 

been demonstrated. This is important because clouds and their impacts on both the weather and 

climate systems are of course a three-dimensional spatial problem.  Thus, while the weather 

forecast community recognizes the need for improved observations of clouds and cloud 

properties, the lack of apparent vertical resolution may be a barrier to more widespread use. A 

common theme that has been propagating in program management and research evolution plans 

within the NWS and the FAA is that higher resolution models and improved cloud microphysics 

schemes will improve the resolution of clouds. As a result, much of the available funding within 

the FAA and National Oceanic and Atmospheric Administration (NOAA) has been directed to 

two places; (1) modeling centers to improve model resolutions/physics and (2) to satellite and 
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radar programs to improve observations. However, relatively little funding has been directed 

toward improved assimilation and incorporation of satellite cloud retrievals in models and DSS. 

While model improvements could lead to modest gains in some cases, the more fundamental 

problem is the latter, which is the fact that current observational information on clouds is not 

being adequately assimilated or utilized to initialize forecast models.   More frequent and tighter 

collaboration between the satellite cloud retrieval and weather forecasting communities is 

needed.  It is also possible that the satellite cloud retrieval community has not yet done an 

adequate job of characterizing errors and uncertainties in order to better promote the more 

effective use of satellite products in weather applications. It should be pointed out that NOAA is 

working to break down and address some of these barriers in their next generation Geostationary 

Operational Environmental Satellite (GOES) program (GOES-R).  For GOES-R, NOAA is 

sponsoring and promoting the development of an operational cloud retrieval system and 

demonstrating new satellite products and applications for the NWS via well-designed and 

focused ‘Proving Ground’ experiments. 

 In this study, new methods to derive cloud water content (CWC) profiles and to infer the 

flight icing threat to aircraft from the satellite retrievals are developed and demonstrated. 

Accurate diagnoses and forecasts of atmospheric icing conditions not only require knowledge of 

the location of clouds, but also require knowledge of the vertical distribution of super-cooled 

liquid water (SLW) and the associated characteristics of the SLW droplet size distribution.  In 

this work, an approach is taken that utilizes traditional satellite-derived cloud properties, 

including microphysical parameters, to infer the potential existence and density of SLW 

embedded in a wide variety of cloud types, including deep mixed-phase ice over water cloud 

systems often associated with synoptic scale storm systems.  In order to accomplish this, an 
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improved understanding of the satellite product uncertainties is developed and empirical methods 

are employed to improve their overall accuracies. Better information on cloud vertical structure, 

which is typically void in traditional passive satellite retrievals, is also required.  For deep ice 

over water cloud systems, imager cloud properties are used to constrain climatological 

information on cloud vertical structure and water phase obtained apriori from radar and lidar 

observations, and from cloud model analyses. The motivation for this synergistic approach is the 

fact that in many instances, no single observing system or numerical modeling capability can 

realistically capture or predict cloud properties with the optimal resolution and accuracy needed.  

Therefore, the unique, but complementary information on clouds that is captured from multiple 

observing and modeling systems is assessed independently and combined and constrained with 

operational satellite retrievals to improve the four dimensional characterization of clouds for 

weather and climate applications.  

 Icing reports from pilots (PIREPS) and case studies conducted at the time of several 

serious aviation incidents are used to validate the satellite icing threat estimates. Ice water 

content (IWC) profiles derived from the satellite imager data in a wide range of cloud conditions 

are compared to CloudSat and CALIPSO retrievals.  The level of agreement found with 

CloudSat/CALIPSO in the upper troposphere along with the degree of correspondence with icing 

PIREPS in the lower troposphere provides a closure test for the profiling method and 

demonstrates how well passive satellite observations can be used to infer the vertical distribution 

of cloud water in the atmosphere using the new methods developed here. 

 Although optically thick ice over water clouds occur relatively infrequently in most 

locations, they contain a significant fraction of the total cloud mass found over large areas of the 

Earth, are commonly associated with hazardous weather and precipitation, and are therefore a 
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major weather concern and a central focus in numerical weather prediction (NWP). Thus, an 

additional potential benefit of this study is a new synergistic method for estimating the global 

distribution of cloud ice and liquid water content that is unlike any method previously developed 

and that could play a future role in helping to validate weather and climate models.  

3 Models and Data 

3.1 NOAA GSD/ESRL Assimilation and Modeling System 

The Rapid Update Cycle (RUC), and its successor, the Rapid Refresh (RAP), are 

NOAA/NCEP (National Centers for Environmental Prediction) operational weather prediction 

systems developed at the Earth Systems Research Laboratory (ESRL) in the NOAA Global 

Systems Division (GSD) in Boulder, Colorado.  The RUC and RAP serve users needing 

frequently updated short-range weather forecasts, including those in the US aviation community, 

the U.S. severe weather forecasting community and the renewable energy industry. The RUC 

and RAP are key elements of the FAA Aviation Weather Research Program. They are used in 

this aviation weather focused study because the cloud analysis scheme, which incorporates 

satellite-derived cloud products in the model’s assimilation system, is relatively advanced with 

respect to the volume of cloud observations ingested. The RAP replaced the RUC as the NOAA 

hourly-updated assimilation/modeling system operational at NCEP starting 1 May 2012. 

Therefore, cloud fields developed from both systems in the native 50-level vertical coordinate 

have been evaluated with respect to satellite observations at different times during the course of 

this study.    

The RUC numerical forecast model is an advanced version of the hydrostatic primitive 

equation model described by Bleck and Benjamin (1993) configured in a hybrid 
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isentropic/terrain following vertical coordinate system (Benjamin et al., 2004a). The NCEP RAP 

uses a configuration of the Weather Research and Forecasting (WRF) model in a 1-hour cycle 

system with updated RUC-like physics (Grell-G3 convection, Thompson/NCAR microphysics, 

RRTM longwave radiation, Goddard shortwave radiation, MYNN-Olsen turbulent mixing, RUC-

Smirnova land-surface model). Like the RUC, it is run at 13-km horizontal resolution with 50 

vertical levels in a sigma coordinate system but over a considerably expanded domain in all 

directions, notably to include Alaska. The RUC and RAP processing domains are shown in 

Figure 1. The Gridpoint Statistical Interpolation (GSI) system configured for the RAP includes a 

similar cloud/hydrometeor analysis that was developed for the RUC (Benjamin et al., 2004b). In 

this system, a wide variety of observations including rawindsonde, surface, aircraft, radar and 

satellite data are assimilated. The RUC and RAP cycle 1-hourly at full-resolution five 

microphysical species (qc - cloud water, qi - cloud ice, qr - rain water, qs - snow, and qg - graupel, 

where q is the species mixing ratio) and have the capability for updating these fields using 

observations.  The current assimilation technique for the RUC and RAP uses Meteorological 

Terminal Aviation routine weather Report (METAR) cloud and visibility data, and GOES cloud-

top data to modify the 1-h forecast (background) 3-d hydrometeor and water vapor fields. The 

RUC assimilation of GOES cloud-top pressure and temperature (Benjamin et al., 2004b) is based 

on the creation of a 3-D gridded cloud logical field indicating volumes where: 1) it is known that 

clouds do not exist, 2) it is known that clouds do exist, or 3) the presence of clouds is 

indeterminate. The same logical structure used for GOES cloud assimilation is used again with 

METAR observations, which further improves the 3-d hydrometeor yes/no/unknown field when 

compared to observations. In the current cloud-building scheme, a layer depth of 50 hPa is 

assumed unless the same METAR observation reports precipitation, in which case, the depth is 
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set at 150 hPa. In this study, we compute and utilize the ice and liquid water contents (IWC and 

LWC) and water paths (IWP and LWP) computed from the cloud mixing ratios.  Cloud ice (i), 

snow (s), and graupel (g) are combined to form the total IWC while cloud water (c) and rain (r) 

are combined to form the total LWC. That is,  

 LWC(zi ) = qc (zi )ρair + qr (zi )ρair  for i=1,2,3,…,50 levels,  (1) 

  IWC(zi ) = qi (zi )ρair + qs (zi )ρair + qg(zi )ρair  for i=1,2,3,…,50 levels.   (2) 

The total cloud water content (CWC) at a particular level is 

 CWC(zi ) = LWC(zi )+ IWC(zi ) .  (3) 

Cloud water path (CWP) is the vertical integral of the CWC profile between the cloud top and 

base altitudes (Zt and Zb) computed as 

  CWP = CWC(zi )
Zb

Zt

∫ dz .  (4) 

 

3.2 Satellite Data and Products 

The primary satellite datasets used in this study consist of cloud properties derived from 

passive sensor data obtained from the Geostationary Operational Environmental Satellite 

(GOES-10 thru GOES-15) imagers, the Moderate Resolution Imaging Spectroradiometer 

(MODIS) imager on the Sun-synchronous Aqua satellite, and from active sensor data obtained 

from the Cloud Profiling Radar (CPR) on CloudSat, and the Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP) on the CALIPSO satellite.  AQUA, CloudSat, and CALIPSO 

are three satellites flown in the tightly coordinated National Aeronautics and Space 

Administration (NASA) A-Train formation. Brief descriptions of the various cloud products and 

the retrieval methods are given below. 
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3.2.1 GOES and MODIS  

The passive satellite cloud retrieval algorithms were developed for the NASA Clouds and 

Earth’s Radiant Energy System (CERES; Wielicki et al. 1996) climate program at NASA 

Langley Research Center (LaRC). A critical aspect in developing CERES cloud and radiation 

datasets for climate studies is that the algorithms and calibrations be consistent across satellite 

platforms.  Thus, the retrieval algorithms were designed to nominally use just 4 or 5 channels 

common to the various satellite imagers. For MODIS, which is a 36-channel imager taking data 

with a nominal resolution of 1-km (250-m for the visible band), the critical bands for the cloud 

property retrievals used here are centered near 0.64 (visible, VIS), 3.7 (shortwave- infrared, 

SIR), 10.8 (infrared, IR), 12.0 (split window, SW) and 13.3 (CO2) µm. Similar channels are 

available on the GOES imagers with a 4-km (1-km for the visible band) nominal resolution 

beginning with GOES-8, which was launched in 1994. The primary GOES channels are at 0.65, 

3.9, 10.8, and at either 12.0 or 13.3 µm. The CO2 channel replaced the SW channel beginning 

with GOES-12. The GOES radiances are calibrated to MODIS following the approach of Minnis 

et al. (2002, 2008b).  The biggest impact of the calibration is to account for degradation in the 

GOES visible channel. 

 The retrieval algorithms used to derive cloud properties from the MODIS and GOES 

radiance data are the VISST (Visible Infrared Solar-infrared Split-window Technique) and SIST 

(Solar-infrared Infrared Split Window Technique). The VISST operates during the daytime using 

the VIS, SIR, IR, and SW or CO2 channels while the SIST operates at night using the same 

channels but without the VIS. These methods are described in Minnis et al. (2011a).  The multi-

layer VISST (ML-VISST) was implemented to identify multi-layer clouds for situations where 

optically thin cirrus overlay a lower level opaque cloud deck (Chang et al., 2010a), and to derive 
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improved cloud boundaries and optical properties of each layer (Chang et al., 2010b; Minnis et 

al., 2007) versus those that would be retrieved with the single-layer (SL) assumption. In these 

techniques, cloud parameters are derived using a set of parameterizations of the Earth-

atmosphere reflectance (during daytime) and infrared emittance models (day and night) that 

incorporate cloud contributions for each relevant wavelength in order to match the observed 

satellite radiances with adding-doubling (AD) radiative transfer calculations, and assuming that 

each cloud layer is composed entirely of either ice crystals or water droplets. The calculations are 

conducted a-priori for a wide range of cloud liquid water droplets with effective radii values 

ranging from 2 to 32 µm, and for randomly oriented hexagonal ice crystal particle size 

distributions with effective diameters varying from 6 to 135 µm (Minnis et al., 1998). The 

parameterizations are able to reproduce the AD calculations quite accurately and significantly 

improve the efficiency of the inverse retrieval problem in routine operational applications.  

 The observed radiance at a particular wavelength depends to varying degrees on the cloud 

temperature, its geometric thickness, and microphysical properties, the latter of which includes 

the shapes of the cloud particles, their size distribution and concentration. For the algorithms 

described here, the IR radiance primarily depends on the effective cloud temperature (CET), 

while the VIS channel reflectance is mainly determined by the cloud optical depth (COD or τ), 

which is the convolution over the thickness of the cloud of the hydrometeor concentration or 

number density N, the extinction efficiency Qe, and the effective cross-sectional area of the 

particle. For water droplets, the last variable is defined as the cross-sectional area of a droplet 

having the effective radius (CER or re),  
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 re =
πr3n(r)dr

r1

r2

∫

πr2n(r)dr
r1

r2

∫
,  (5) 

where the integration is over a size distribution having the number density of particles n(r) of 

radius r between r1 and r2. In this study, re is retrieved from the SIR channel. The cloud optical 

depth is,  

 τ = πQe N
z1

z2

∫ re
2dr .  (6) 

For ice clouds, the re is defined for randomly oriented hexagonal ice crystals and for a wide 

range of potential size distributions as in Minnis et al. 2011(a). The cloud water path can be 

computed as  

 CWP = 4ρτ re (3Qe ) ,  (7) 

where ρ is the water density, which is 1.0 and 0.9 g cm-3 for liquid and solid water, respectively. 

For clouds with tops determined to be ice (liquid), CWP is referred to as the IWP (LWP). In this 

formulation, it is assumed that the re is constant throughout the depth of the cloud. Since the 

value of CER retrieved using the SIR channel corresponds to an optical depth of ~3 or less at the 

top of the cloud, it is not necessarily representative of the entire cloud. For liquid clouds, the 

adiabatic approximation  

 LWP =10τ re (9Qe ) ,  (8) 

has been found to provide more accurate results if re is retrieved using the MODIS 2.1-µm 

channel (Seethala and Horvath, 2010). It is not necessarily more accurate when using the SIR 

retrieval of re. Hereafter, re is referred to as CER. In this study, the IWP and LWP are computed 

using Eq (7), where the extinction efficiency Qe, ranges from 2.03 to 2.19 for liquid droplets. For 
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clouds with ice phase tops, the values of Qe are found in Table 8 of Minnis et al. (1998). Due to 

the vertical homogeneity assumptions associated with Eq (7) and that no attempt is made to 

partition the effects of liquid and ice hydrometeors in mixed phase and overlapping cloud 

conditions, the retrieved values of IWP and LWP in some cloud conditions may not be that 

representative of the true values occurring in nature. Satellite VIS and SIR retrievals of LWP 

have been compared extensively and quite favorably with retrievals from microwave radiometer 

data (e.g., Bennartz, 2007; Dong et al., 2008; Painemal et al., 2012). On the other hand, with the 

exception of just a few studies (e.g., Mace et al., 1998, 2005), IWP has not been extensively 

validated.  Their uncertainties are explored further in section 4. 

 CET is the effective radiating temperature of the cloud and typically is located at a distance 

from cloud top corresponding to a COD value of ~ 1.1 (Holz et al., 2008). It varies with the 

viewing zenith angle, VZA. The cloud effective height, CEH, is determined from CET using a 

temperature profile from an NWP analysis. The cloud top temperature, CTT, the geometric 

thickness, H, and therefore the cloud top and base heights, CTH and CBH, are derived from 

empirical methods based on CET, phase, and COD (Minnis et al., 2008c, 2010). Thus, the 

critical cloud parameters derived in this study from GOES (MODIS) data, hereafter the GDCP 

(MDCP), include for each cloudy pixel, the cloud top phase, the ice or liquid CER, the LWP or 

IWP, COD, CTT, CTH, H (and thus CBH).   The COD, LWP, IWP, CER, and H can be derived 

for a wide range of cloud thicknesses during the daytime since the solar-reflectance at visible 

wavelengths is sensitive to changes in COD from values less than 1 to values near 150.  

Radiative transfer calculations indicate that the reflectance changes very little with increasing 

COD beyond this range. Thus, in the LaRC system, the reflectance saturation point occurs at a 

COD value of 150. Since only infrared channels are available at night, COD, LWP, IWP, CER, 
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and H are only valid for optically thin clouds (COD < 6) since there is little sensitivity to 

variations in COD for thick clouds.  The majority of this study will focus on the daytime satellite 

products.    

3.2.2 CALIPSO  

The CALIPSO satellite, is in the A-train formation and nearly coincident with the Aqua 

satellite (carrying MODIS) and the CloudSat CPR. CALIPSO carries the nadir-pointing CALIOP 

lidar (Winker et al., 2009), which measures parallel and perpendicular attenuated backscatter at 

532 nm and total backscatter at 1064 nm.  The measurements are interpreted at 60-m vertical 

resolution averaged to ~1.0 km along-track between 8.2 and 20.2 km and at 30-m vertical and 

0.333-km along-track resolution below 8.2 km. A number of the CloudSat data products used 

here incorporate CALIPSO data.  These are described in the next section. In addition, IWC 

profiles from release 3 of the CALIPSO Cloud Profile (CPro) product are used in this study. The 

CPro product provides a 532 nm backscatter, a 532 nm extinction coefficient, and IWC profiles 

at 395 vertical bins with a 60 m vertical and a 5 km horizontal resolution.  The CALIPSO IWC is 

derived from an empirical relationship between the extinction coefficient and IWC: 

 IWC =C0 (
σ cp

1000
)C1 ,  (9) 

where C0 = 119 g m-3 and C1 = 1.22. This relationship was derived from co-located lidar 

extinction and in situ measurements of cloud particle properties obtained during field 

experiments (Heymsfield et al., 2005). The extinction coefficient (σcp) is obtained from the 

backscatter coefficient (βcp), 

 σ cp = Scpβcp ,  (10) 
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where Scp is the particle extinction-to-backscatter (lidar) ratio. In all versions of CALIPSO data 

(3.01-3.30) used in this study, the lidar ratio is assumed to be constant within the identified 

layers (features) (Young and Vaughan, 2009). A new parameterization to account for 

temperature and particle size dependence is being evaluated for a future update to the CALIPSO 

data products. 

3.2.3 CloudSat  

The CloudSat CPR is providing unprecedented data describing the vertical structure of cloud 

systems across the Earth (Stephens et al., 2008).  CloudSat is also in the A-train formation with 

Aqua-MODIS and CALIPSO.  The CPR measures the vertical profile of the radar reflectivity 

factor (Ze) at a vertical resolution of 240 m between the surface and an altitude of 30-km.  The 

footprint size is approximately 1.3 km across-track by 1.7 km along-track. The CloudSat version 

4 data products, which include some MODIS and CALIPSO data in the processing schemes, are 

used in this study.  Specifically, the GEOPROF-Lidar, CWC-RO, CWC-RVOD, and 2C-ICE 

products are used extensively.  The GEOPROF-Lidar product (Mace et al., 2009) provides an 

accurate global characterization of cloud boundaries by combining the Radar and Lidar cloud 

masks, taking advantage of their unique sensitivities.  The 2C-ICE product (Deng et al., 2010) 

provides estimates of ice water content derived by combining information from the CPR and 

CALIOP. The CWC-RO product provides cloud water content profile estimates derived from the 

radar-only (RO) while the CWC-RVOD uses the MODIS cloud visible optical depth (daytime 

only) to constrain the radar-only retrieval (RVOD) and is generally thought to be more accurate.  

Details on the CWC-RO and CWC-RVOD algorithms can be found in Wood (2008) and Austin 

et al. (2009). The CWC-RO and CWC-RVOD algorithms also provide composite CWC profiles 

from separate liquid and ice water retrievals. The algorithm assumes that the entire radar signal 
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profile comes from either liquid or ice phase particles, not a mixture of them (Wood, 2008). 

Total column profiles are retrieved for both cloud water phases and combined into a single best 

estimate that depends on the cloud temperature profile. The temperature profiles are from the 

CloudSat European Center for Medium-Range Weather (ECMWF) Forecasts Auxiliary product. 

For radar bins colder than 253 K, the bin is assumed to be an ice cloud and the ice profile is 

applied. For radar range bins warmer than 273 K, the liquid water profile is applied. Between 

253 K and 273 K, the ice and liquid profiles are scaled linearly with temperature, and thus the 

uncertainty increases at these temperatures. In addition, the current version of CloudSat liquid 

phase retrieval uses an incorrect refractive index and has difficulty resolving cloud hydrometeors 

close to the surface (below ~ 1 km). Therefore, in this study we primarily focus on the CloudSat 

retrievals at altitudes above the 253 K level.  

3.2.4 CERES C3M  

The CERES C3M data product is used to help tune and validate the passive satellite cloud 

profiling method developed here. C3M merges CloudSat and CALIPSO satellite retrievals with 

CERES and MODIS cloud and radiation parameters (Kato et al., 2010) derived from AQUA 

satellite data.  All three satellites are flown in the A-Train formation beginning with the AQUA, 

launched in in 2002, followed by CloudSat and CALIPSO which were launched in 2006. Thus, 

the A-Train provides a simultaneous multi-sensor view of clouds and radiation.  The C3M data 

product was designed to merge and geo-locate several A-Train datasets containing cloud, aerosol 

and radiation retrievals, in order to better promote and simplify their use in scientific studies. A 

full-resolution intermediate product that is available upon request from the CERES program at 

NASA LaRC is employed here, which includes the CERES MDCP, the CloudSat CWC-RO, and 

the CALIPSO CPro cloud properties. 
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4 NWP Cloud Analyses and Forecasts vs. Satellite Observations  

4.1 Background 

NWP models are often considered the single most important tools used in modern day 

weather forecasting.  However, accurate numerical forecasts depend significantly on how well 

the initial state of the atmosphere is known and prescribed to the model.  Thus, observations of 

the atmospheric state are just as important in weather forecasting as the models that process the 

data to make future predictions.  Because conventional in-situ observations from radiosondes and 

surface stations are sparse, relatively high-resolution satellite observations now constitute the 

vast majority of information assimilated by NWP models. Satellite radiance assimilation in NWP 

has been used effectively to improve weather forecasts in cloud free regions (e.g., Andersson et 

al., 1994; Derber and Wu, 1998; Le Marshall et al., 2006), particularly in data sparse regions 

over the oceans. Nevertheless, much of the satellite information content is not used due to data 

thinning procedures to overcome cloud contamination, computational resource limits, and other 

factors. Thus, the improvements in modern day weather forecasting that have been realized since 

the advent of weather satellites are likely to be modest relative to the potential impact that could 

still be achieved if more of the available information were utilized.  

Clouds are fundamental to our weather, yet in general they remain poorly initialized in 

models.  Some recent studies have demonstrated the potential to improve the initialization of 

clouds in NWP models by assimilating satellite radiances (e.g., Greenwald et al., 2002; 

Vukicevic et al., 2004, 2006) and satellite products (e.g., Lipton et al., 1999; Baylor et al., 2000; 

Benjamin et al., 2004a; Benedetti and Janiskova 2008; Jones et al., 2012), but much more work 

is needed to implement these advantageously in operational weather forecast systems. While 

promising, assimilation of cloud affected radiance is problematic because of the difficulties and 
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resources required to relate the radiances to the cloud variables resolved by the model (e.g., 

Bennartz and Greenwald, 2011).  

Satellite products, rather than radiances, provide an alternative option to incorporate satellite 

data in NWP since their assimilation may be less resource intensive and they can provide 

information more directly related to the model variables. The satellite retrieval schemes are also 

typically optimized to exploit a greater spectrum of information contained in the satellite data, as 

well as other ancillary statistical and climatologically relevant information. With respect to 

clouds, for example, the NOAA/GSD-ESRL system (described in sec. 2.1) assimilates satellite 

derived cloud top heights, and subsequently modifies the hydrometeor and water vapor fields 

used to initialize the RAP (successor to the RUC) which is operational at NCEP. This method 

and others that are similar have demonstrated a positive impact in NWP (e.g., Yucel et al., 2002, 

2003; Lin et al., 2003), even though crude assumptions are made regarding the vertical extent 

and density of the modified cloud fields.  

In the mid-2000’s, the NASA Applied Sciences program had an interest in fostering 

partnerships to help transition NASA weather satellite products to NOAA operational systems. 

As a result, a partnership between the satellite cloud remote sensing group at NASA LaRC and 

the Assimilation and Modeling branch at the NOAA GSD-ESRL was formed to facilitate the 

transition of new satellite products to an operational numerical weather forecasting center with 

the goal of improving short-range forecasts of cloud hydrometeors and associated weather 

conditions. The experimental models being run at GSD-ESRL and the operational model run at 

NCEP at that time were the RUC.  Specific goals were to investigate the potential for 

assimilating satellite-derived LWP data to improve icing diagnoses and forecasts for low-level 

clouds and to ingest the cloud top height information that NASA was deriving from GOES 
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imager data. Cloud top pressure (CTP) data derived operationally over the CONUS from the 

GOES sounder data at the NOAA National Environmental Satellite, Data, and Information 

Service (NESDIS) (Schreiner et al., 2001) were already being assimilated into the RUC to help 

build and clear clouds in the model analysis.  The NOAA/NESDIS GOES sounder CTP product 

provides good information on upper level clouds but over a somewhat limited domain confined 

to the CONUS. Thus, in the early implementations of the RUC, no satellite coverage was 

available over southern Canada, for example.  Better information on low clouds and increased 

coverage over a much wider area were needed, particularly as the RUC domain was being 

significantly expanded for the RAP (see Figure 1). The NASA cloud altitude products derived 

from the GOES imagers met these needs and eventually replaced or augmented the NESDIS 

products in some versions of the RUC and RAP implemented at GSD/ESRL and at NCEP.  

While this collaboration between NASA and NOAA resulted in a number of significant 

advances, including the development of a system for routinely ingesting the NASA cloud 

products operationally at NCEP, and generally more accurate representations of clouds in the 

NOAA models, a number of issues and challenges also became apparent. In this section, a few of 

the more pertinent of these successes and remaining challenges are highlighted for the primary 

purpose of illustrating the need for continued work to improve the utility of satellite cloud 

properties in weather analyses and forecasts.  While there are both theoretical and practical 

reasons that the assimilation of cloud data into models remains a considerably difficult problem 

(Errico et al., 2007), considering that more information on clouds are now being derived 

operationally from satellite data (e.g., cloud water path, cloud thickness), greater impacts are 

certainly possible.   
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4.2  Cloud Comparisons 

In June of 2005 the operational implementation of the RUC at NCEP was updated from the 

RUC-20 (20 km grid) to the RUC-13 (13-km grid).  That update included many changes to the 

model physics and cloud analysis scheme. Smith et al. (2006) compared cloud fields from each 

of these versions to the GDCP.  The goal was to test the latest implementation (RUC-13) to see if 

the significant changes made to the cloud analysis code improved the level of agreement between 

the cloud analyses and forecasts when compared with the satellite products relative to that found 

in comparisons with the RUC-20. In that study, cloud properties analyzed and predicted by RUC 

were compared with the satellite estimates. The comparison focused on cloud frequency, cloud 

water path and cloud top height. The analysis was restricted to satellite products derived at 1445, 

1745 and 2045 UTC, and analyzed and predicted (1-hr, 3-hr, and 6-hr forecasts) fields from the 

RUC valid at 1500, 1800 and 2100 UTC.  Spatial matching was accomplished by mapping the 

satellite pixel-level parameters to the RUC grid.  For each grid box, the satellite cloud parameters 

were averaged for the ice and liquid phases separately.  A RUC grid box is either cloudy or clear.  

A corresponding GOES grid box is overcast, clear or partly cloudy. Cloud frequencies were 

computed for overcast grid boxes, and then broken down into levels; low (0-3 km), mid (3-7 km) 

and high (greater than 7 km), and stratified by the cloud phase at cloud top.  The main 

conclusions from that study were that the total cloud cover in both models agreed well with the 

satellite observations on average for the entire domain. This result was not unexpected when 

considering that the model assimilation system was assimilating the NOAA-NESDIS CTP 

product to build and clear clouds in order to help improve the cloud initialization.  However, 

when the comparisons were stratified by cloud top phase, the RUC-13 ice and liquid cloud cover 

was found to agree less with the satellite observations than that found for the RUC-20.  The 
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RUC-13 was producing considerably more ice cloud and less liquid clouds than both the RUC-

20 and that inferred from the satellite observations.  These differences were largest at the 

analysis time and decreased with increasing forecast hour out to 6-hours. This led to the 

discovery of several bugs in the early implementation of the RUC-13.  For example, a logic error 

was found that resulted in the clearing (removal) of too much oceanic stratocumulus due to a 

misinterpretation of the NOAA-NESDIS product.  A coding error was also found in a relative 

humidity calculation within the cloud analysis code where a variable was not being properly 

indexed to account for latitudinal dependencies.  It was encouraging at that time to learn that the 

satellite observations could be used to improve cloud analyses in the RUC via simple inter-

comparisons. 

Similar cloud comparisons to those conducted in Smith et al. (2006) were performed more 

recently to test the RAP version-1 (V1) cloud analyses and forecasts in both the GSD 

implementation as well as the operational implementation at NCEP. RAP analyses and forecasts 

out to 6-hrs were obtained and matched with the LaRC GDCP over a 7-day period from 12-18 

November 2012. A few of the more pertinent results are presented here. The cloud and 

hydrometeor analysis in the RAP is considerably enhanced relative to its predecessor the RUC. 

These enhancements include the addition of the LaRC GOES imager CTP product, 

improvements in the use of METAR cloud ceiling data and in radar reflectivity assimilation 

among other improvements. More details on the RAP can be found at 

http://rapidrefresh.noaa.gov. In the GSD RAP, the GOES cloud building logic in the cloud 

analysis scheme was turned on, whereas in the NCEP RAPv1, the GOES cloud building logic 

was turned off.   
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Figure 2 depicts the LaRC CTH derived from GOES (Figure 2b) at 1745 UTC and that 

derived in the GSD (Figure 2c) and NCEPv1 RAP analysis (Figure 2d) at 1800 UTC on 12 

November 2012. An RGB (red-green-blue channel combination) image derived from the VIS, 

SIR, and IR imager channels on GOES-E and GOES-W is also shown (Figure 2a) which easily 

distinguishes the clouds from cloud-free areas. The darkest of the pink areas are cloud free but 

snow-covered (i.e. central Utah, western and northeastern Colorado, and extending northward 

across eastern Montana, western Nebraska, and across the Dakotas into Canada).  Overall and 

qualitatively, the CTH analyses from the RAP agree reasonably well with the GOES analysis. 

The most notable discrepancies are found in the areas circled in white in Figure 2.  For example, 

the NCEP RAPv1 produced some high level clouds in eastern Oklahoma and a broad area of 

middle level clouds between the Yucatan peninsula and Cuba, neither of which are evident in the 

RGB image or the GOES CTH analysis.  The NCEP RAPv1 analysis also severely 

underestimates the amount of low cloudiness over the mid-western Atlantic. Another interesting 

discrepancy occurs over northern Wisconsin into southern Canada, where a mid-level SLW 

cloud was detected from GOES with CTH values ranging from 3-5 km.  Both model analyses 

indicate that this cloud is about 1.5 km lower than the GOES estimate on average, and ranges 

from about 2-4 km. The GOES CET associated with the higher clouds in this area indicated that 

the cloud top temperatures were between -20°C to -25°C which corresponds to nearly 5 km in 

the 12 UTC radiosonde profile obtained near Minneapolis earlier in the day.  This supports the 

satellite estimate in this case.  One reason that the CTH in the GSD analysis (GOES cloud 

building is on) was not adjusted to better match the satellite analysis is that the cloud building 

logic does not assign significant value to satellite CTH retrievals in the mid-levels.  This is 

because of the well-known ‘mid-level’ cloud bias commonly found in VIS/IR satellite CTH 
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retrieval methods. In overlapping conditions (i.e. high cirrus over low-level stratus), these clouds 

appear as mid-level clouds because they are optically thick, and the warmer low-level cloud 

heavily influences the CET. The impact of assimilating overlapping clouds as mid-level clouds 

in the model analysis has dire consequences, and leads to significant overestimates of mid-

tropospheric moisture, which is neither an accurate nor desirable model outcome. In this 

particular case, the satellite data could be trusted, but unless more accurate satellite CTH 

estimates are obtained in overlapping conditions, or better estimates of uncertainties are provided 

to flag the more uncertain mid-level cloud retrievals, the modeling community will struggle to 

use these data most effectively.  For the comparisons shown in this section, only the single-layer 

GDCP are compared to the model output.  A long-term goal is to demonstrate improvements in 

the satellite retrievals when applying multi-layer techniques, but that remains as future work.  

Figure 3 depicts the fraction of clouds detected by GOES compared to that found in the 

model analyses and forecasts for all, low (0-3 km), middle (3-7 km), and high (7+ km) clouds as 

defined by their CTH.  Thus, this comparison is from a satellite perspective, with a top down 

view, and does not consider cloud overlap. The total cloud fraction detected by GOES is 67% 

indicating that this particular week in November 2012 was relatively cloudy over the domain. 

Overall, the total cloudiness is well represented in the two models analyses with respect to 

GOES, with differences found to be 4% (7%) for the GSD (NCEP) analyses, respectively.  Note 

that the total cloud fraction valid at the analysis time increases with increasing lead-time in the 

forecasts.  This indicates that the cloud clearing done in the model initialization is losing 

retention as the forecast period increases. Over the entire domain, most of this effect is occurring 

with high clouds, as the low and mid-level cloud amounts remain relatively constant with 

forecast hour. The low cloud amounts agree to within a few percent with the satellite analysis, 
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however the satellite analysis also suggests that there are more mid-level clouds and less high-

level clouds than found in the model output. This is partially due to the mid-cloud bias in the 

satellite observations due to overlapping clouds, but model errors may also contribute.  A wide 

range of biases have been found in other studies when comparing clouds in model analyses with 

observations but model overestimates (underestimates) of high (middle) level clouds and 

significant problems with low clouds are consistently found. For example, Lin and Zhang (2004) 

compared climate model output to International Satellite Cloud Climatology Project (ISCCP) 

data and found notable underestimates in cloud fraction over the mid-latitude storm track regions 

and in the sub-tropical dry regions but overestimates in tropical convective regions.  They found 

that the model produced too much (little) high (middle) level cloudiness. They also found that 

the model produced too many optically thick low clouds and too few optically thinner low 

clouds. Yoo and Li (2012) compared the NCEP Global Forecast System (GFS) model to MODIS 

single and multi-layer cloud retrievals, and active sensor data, and found that both mid-level and 

high clouds are overestimated in the GFS relative to the satellite retrievals. The GFS also had a 

tendency to underestimate low clouds over the oceans but overestimate low clouds over the 

continents.  Bodas-Salcedo et al. (2008) found that the UK Met Office Unified Model produces 

to few mid-level clouds compared to CloudSat data. Yoo et al. (2013) examined the marine 

stratocumulus difference more carefully and found that the GFS underestimates the cloud LWC. 

Ahlgrimm et al. (2012) compared low cloud properties in the ECMWF to ground-based 

observations at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) 

site in Lamont, Oklahoma. In that study, the ECMWF LWP was found to be too high in 

summertime shallow convective clouds but for overcast low clouds in other seasons, the model 

produced fewer clouds and lower values of LWP than that observed.  
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A regional comparison between the satellite cloud fraction and the GSD and NCEP model is 

summarized in Table 1a and Table 1b. In this case, the comparison is stratified for land and 

ocean, and for three oceanic regions, over the Atlantic, the Pacific and the Gulf of Mexico, where 

the clouds are expected to be quite different because they are influenced by much different 

weather regimes. The purpose of this comparison is to see how well the model tracks regional 

variations in clouds as observed from satellite and to highlight any notable differences between 

the GSD and NCEP versions of the RAP since GOES cloud building was turned off in the NCEP 

version.  It is assumed that the satellite retrievals, and their uncertainties, are relatively self-

consistent over the various regions, which these data and other validation studies indicate. The 

data shown here indicate that the greatest impact of the cloud building is associated with low 

clouds over the oceans since much better agreement with GOES is found in the GSD analyses 

than in the NCEP analyses. These results also suggest that the different cloud processes and 

cloud types associated with low clouds over these three different oceanic regions may not be that 

well represented in the model physics since the level of agreement with the satellite observations 

is so variable. For example, even with cloud building turned on, as in the GSD version, there are 

20% more low clouds over the Pacific ocean but 18% fewer low clouds over the Gulf of Mexico 

than found in the satellite analyses. Furthermore, nearly 50% of the low clouds observed from 

GOES are missing in the NCEP analyses over the Gulf of Mexico.  

Figure 4 further illustrates the problem that models have with retaining assimilated satellite 

information as a function of forecast hour. Here, the focus is on cloud clearing. This figure 

depicts the fraction of time that the GSD model grid box is cloud-free relative to the regions that 

GOES indicates are 100% cloud free. This analysis is broken down by region and forecast hour. 

For example, over land the model correctly depicts clear areas 90% of the time in the analysis 
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and 1-hr forecast.  This reduces to 83% and 79% in the 3-hr and 6-hr forecasts.  The situation is 

not as good over the oceans, where the model only correctly depicts clear regions 80% of the 

time in the analysis and less than 40% of the time in the 6-hr forecast.  Thus, despite the positive 

impact of cloud clearing in the model initialization, clouds reappear in areas observed from 

satellite to be cloud free. This effect is worse over ocean than land (particularly over the Pacific 

stratocumulus regime) and also worse with increasing forecast lead-time. Over oceans the cloud 

clearing retention issues are mostly associated with low clouds while over the land they are 

mostly associated with high clouds (not shown).  

One satellite-derived parameter of interest that is not currently used in the RAP assimilation 

system but has significant potential to improve the representation of clouds and their impacts 

(e.g., icing forecasts, precipitation) is the cloud water path.  As described earlier, this parameter 

is diagnosed explicitly in the RUC/RAP modeling system and includes the contribution from all 

five of the species cloud water mixing ratios (ice+liquid+snow+rain+graupel). The CWP derived 

from GOES and from the RUC are shown in Figure 5a and Figure 5b at 20 UTC on May 6, 2008. 

The CWP difference is shown in Figure 5c. In this figure, the GOES CWP represents the 

retrieved LWP for liquid topped clouds and IWP for ice-topped clouds.  These results indicate 

that while the overall representation of CWP produced by the model compares reasonably well 

with the observations, the instantaneous differences over small spatial scales are quite large. 

These differences have remained fairly consistent over time and in different implementations of 

the model cloud analysis system as shown in Figure 5d and Figure 5e, which depict a more 

recent comparison with the RAP-GSD and RAP-NCEP derived at 18 UTC on Nov 20, 2012.  

One possible exception is associated with the marine stratocumulus LWP, which in this case 

seems to agree fairly well, qualitatively, with the satellite observations. While the instantaneous 
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uncertainty in the satellite LWP retrievals for these clouds is pretty well understood and found to 

be about 30% (e.g., Dong et al., 2008), previous comparisons (not shown) with earlier versions 

of the RUC indicated that eastern Pacific marine boundary layer clouds found in the model 

analyses were often too low (in altitude), too geometrically thin, and thus their CWP was much 

lower than the satellite retrieved values. Thus, some model improvements for these clouds may 

be evident here. 

Nonetheless, considering the paucity of cloud information being assimilated into models, 

large instantaneous differences between the model CWP and the satellite observations should be 

expected.  Figure 6 shows the range and variability found in the instantaneous CWP comparison 

for the entire domain. Here, the comparison is shown in terms of the frequency distribution of the 

ratio between the instantaneous CWP derived from GOES and that derived from the GSD-RAP 

during the period from 12-18 Nov 2012. The relative differences are found to be quite variable, 

depending on both the altitude bin and the region of interest. The mean values for the CWP 

derived from GOES and those found in the GSD and NCEP model analyses stratified by region 

is shown in Tables 2a-d for all, low, middle, and high clouds.  The ratios of the means and the 

mean biases are also shown. These results indicate that the domain averaged CWP values agree 

to some degree but are generally larger on average from GOES than from the model. For all 

clouds the GSD CWP is within about 25% of the GOES value. A big difference is found in the 

mean CWP for low clouds where the model value is nearly a factor of 3 smaller than that found 

from GOES, although as previously noted, good agreement is evident over the Pacific. For high 

clouds the means are in near perfect agreement overall, but big differences (about a factor of 

two) are found of opposite sign over the Pacific and over the Gulf of Mexico. For mid-level 

clouds, the largest discrepancy between the satellite retrievals and the models is over land, 



 

 

28 

particularly in the GSD version (factor of three difference). Pretty good agreement is found over 

the Atlantic and Pacific (ratios near 1) but poorer agreement is again found over the Gulf.  Even 

though the data points aggregated in these comparisons are for regions in which both the model 

and GOES indicate that clouds occur coincidentally and in the same cloud top height bin (low, 

mid or high), some of the mid-cloud CWP differences shown here may be due to the fact that 

there are 2.5 times more GOES mid-level clouds due to the overlap problem. Thus, the types of 

clouds that comprise these samples, particularly in the mid and high level bins, are not that 

similar in some cases. At high levels, the model analysis produces about 25% more high clouds 

relative to the amount detected from GOES.  Over the same domain during the entire summer of 

2012, the GSD-RAP produced 65% more high clouds relative to those detected from GOES (not 

shown). Some of this difference can be attributed again to the overlap problem but most of the is 

that the model produces much more very thin high cloud than is detected from GOES. About 

14% of the GSD-RUC high clouds found for the 7-day Nov 2008 period have CWP values less 

than 10 gm-2, whereas only 2% of the high clouds detected from GOES have CWP values this 

low.  Data taken from more highly sensitive active sensors such as CALIOP lidar indicate that 

there are a lot of thin cirrus that occur in nature with optical depths less than about 0.3. Since 

these are difficult to detect from passive satellite imagers (e.g., Ackerman et al., 2008), the actual 

frequency of occurrence diagnosed by the model may in fact be more realistic than the GOES 

estimates. Nevertheless, the primary purpose for the comparisons shown in this section is to 

demonstrate that, with respect to clouds that impact our weather (i.e. with appreciable CWP), the 

clouds diagnosed by the models are not in the right place at the right time.  Of course, this may 

be an acceptable outcome for some applications, but aviation weather is not one of them.  

Regarding Figure 6, note also that the ratios of the means, tabulated in the figure legend, are 
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much different (larger) than the apparent mean ratios suggested by the frequency distributions. 

While the former may be more meaningful than the latter given the lack of correlation at the grid 

box level, the main purpose of this figure is to illustrate that the instantaneous differences are 

highly variable and can be as large as an order of magnitude, which significantly exceeds the 

observational uncertainties. This is further illustrated in Figure 7 which shows the mean and 

standard deviation in the gridded CWP ratio (GSD RAP divided by GOES) computed between 

20-50 °N and 80-120 °W using data valid near 18 UTC over a 3-month period in the summer of 

2012, and by varying the grid resolution from the native RAP resolution of 13km to a resolution 

of 500 km. For all clouds (blue curve), the number of regions that comprise the 90-day mean 

values ranged from N=142,486 at 13 km resolution to N=32 at a resolution of 500 km.  The 

derivative of these ratios with changing averaging distance varies markedly at lower distances 

but asymptotes at about 100 km (300 km) for liquid (ice) clouds respectively. This indicates that 

relative to the satellite observations, the variability in the CWP prescribed by the models is not 

captured until averaged over a square area of about 10,000 to 90,000 km.  In general, these 

results indicate that clouds in the model analyses are reasonably well correlated with 

observations at larger (synoptic) scales but are not in the right place at the right time at the 

smaller scales required by the aviation community. These types of potential errors associated 

with clouds in models relative to remote sensing observations are not unique to the models 

explored here, but rather seem to be common in a wide range of models.  

In summary, satellite-derived cloud products provide valuable information that can be used 

to assess NWP cloud analyses and forecasts. It is found that the satellite cloud top height data 

assimilation in the RUC/RAP improves the model analyses to some degree but appears to have 

much less impact on short-range forecasts. Together with the METAR assimilation, the greatest 
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positive impacts appear to be the improved diagnoses of cloud/cloud free areas and more 

accurate cloud top heights and ceilings in the model analyses.  To first order, these are important 

advances for the aviation weather community. Despite the fact that the RUC and RAP may be 

considered state of the art with respect to the amount of information on clouds being assimilated 

operationally over the United States, the critical information on the vertical distribution of cloud 

mass that is needed to better diagnose and predict icing conditions, precipitation, and other 

weather hazards associated with clouds remains relatively poor when compared to the potential 

information contained in the satellite retrievals. In the next section of this study, a profiling 

technique is developed that has the potential to address this issue. One purpose for the profiling 

technique is to improve the compatibility between the satellite data and the model cloud 

variables by projecting the satellite cloud properties into a 3-dimensional system along with 

guidance that can be used to address the potential partitioning of cloud ice and liquid. While 

developing and verifying the technique, it is found that significant adjustments are needed in 

order to improve the accuracy of the satellite products. These are demonstrated below. Thus, 

another potential benefit of this study is the development of new, more accurate, satellite 

products that are more consistent with cloud variables in models and therefore more suitable for 

assimilation. While these datasets may further improve cloud analyses in weather applications, 

variational approaches will most certainly be needed in order to improve short-range forecasts.  

This is because the current cloud product assimilation methods do not appear to adequately 

address the linkage between clouds and the model dynamics and physics that are needed to 

accurately retain and project the information gained from satellite observations downstream. 
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5 A Cloud Water Content Profiling Technique 

5.1 Background 

In this section, a CWC profiling technique is developed for application to satellite imager 

data.  This work is motivated by the many weather applications that require vertical resolution of 

atmospheric constituents. Data from active sensors, such as that from the CloudSat and 

CALIPSO satellites, and from radars and lidars deployed at ground sites, provide the capability 

to resolve the vertical distribution of some cloud parameters (e.g., Austin et al. 2009). When 

combined, radar and lidar data provide an accurate characterization of cloud boundaries (Mace et 

al., 2009) in a wide range of conditions, and can also resolve the IWC in upper tropospheric 

clouds with reasonable accuracy (e.g., Deng et al. 2013).  However, this information is only 

available in a small footprint directly beneath the satellite track or above the ground station, 

which is of limited direct use in weather applications. Passive satellite imager data provide cloud 

information and integral cloud parameters with the temporal and spatial resolution needed but 

lack vertical resolution.  This study seeks to exploit the advantages of both the active and passive 

sensor systems synergistically in order to produce an accurate characterization of clouds in 4-D 

(vertical cloud structures over wide areas and with high temporal resolution). Smith et al. (2010) 

introduced a profiling concept for application to weather satellite data.  The technique employs 

climatological vertical distribution functions (VDF’s), which are derived from CloudSat CWC 

profiles and constrains them with satellite imager estimates of cloud boundaries and CWP in 

order to derive CWC profiles at the imager resolutions. The updated version described below 

better accounts for retrieval errors and thus improves the accuracy of the imager retrievals and 

the derived profiles. The CALIPSO, CloudSat and imager (e.g., GOES, MODIS) observations of 

cloud properties each have notable limitations. The CALIOP is highly sensitive to thin clouds 
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but fully attenuates at an optical depth of about 3.  The CPR sensitivity is not as high as 

CALIOP, which limits the ability to detect some thin cirrus and low clouds.  Difficulties in 

detecting low clouds are also encountered due to surface clutter. The CPR can penetrate deep 

optically thick ice over water clouds but attenuation due to encounters with precipitation size 

hydrometeors which are common in these types of clouds confound the retrieval of accurate 

vertical profiles. This leads to errors in cloud base detection, cloud typing, a low bias in cloud 

water content retrievals, and errors in the vertical distribution of cloud water content derived 

from CloudSat data. Some of these issues are apparent in Figure 8, which shows satellite-derived 

cloud properties retrieved in two deep cloud systems found along the CloudSat and CALIPSO 

orbit track over the eastern Dakotas for the 6 May 2008 case shown in Figure 5. With respect to 

Figure 8a, the CPR reflectivity image shown in panel (a) suggests that both cloud systems are 

producing precipitation to the surface, particularly near 44°N and 48°N. Next Generation 

Weather Radar (NEXRAD) and METAR data (not shown) confirm this. The cloud boundaries 

derived from the radar, the lidar, or both, are indicated by the different colors shown in panel (b). 

In this case, the CPR detects most of the hydrometeors near the tops of the clouds that were 

detected by CALIOP. The CloudSat CWC retrievals shown in panels (c) and (d) imply that most 

of the mass in these clouds is above 5 km.  The CWC-RVOD (constrained with MODIS visible 

COD) retrieval appears to fail in portions of the thickest part of the southern system but provides 

retrievals to a greater depth below the cloud top, extending down to 2 km or so.  The CWC-RO 

is unable to retrieve cloud properties below about 4 km. Panel (e) shows the corresponding RUC 

CWC analysis indicating that the cloud boundaries are reasonably well diagnosed for both cloud 

systems. The magnitude and distribution of CWC found in the RUC analysis agrees well with 

CloudSat for the northern system, while poor agreement is found for the more severe convective 
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system to the south. This is reinforced in panel (e) which compares the CWP derived from the 

RUC with that derived from GOES-12 and from CloudSat (CWC-RVOD). With the exception of 

the deficiency in the RUC CWP for the southern system, all three systems track the CWP in a 

similar manner.  The deep convective CWP derived from GOES peaks at a value of about 5500 

gm-2, whereas the values retrieved from CloudSat are much higher; clearly, care must be taken in 

how both the active and passive sensor retrievals are interpreted. Accurate imager retrievals of 

CWP are needed in order to estimate accurate CWC profiles from weather satellite data. 

Therefore, errors due to the simplifying assumptions in the current imager retrieval techniques 

also need to be accounted for.  For example, large errors occur for optically thick, single-layer 

(SL) ice over water cloud systems (hereafter, SLIOW clouds) because the imager retrieval 

techniques assume that the clouds are composed entirely of ice and that they are vertically 

homogenous. These assumptions are often violated in natural SLIOW clouds because liquid 

water is in fact often present, which explains the typically large values of COD found for these 

clouds, and because many observational studies have shown that the mass density (IWC), and 

size of the cloud ice crystals, typically increase with increasing temperature and distance from 

cloud top (e.g., Heymsfield et al., 1990; Heymsfield et al., 2007). Thus, the retrieved IWP should 

not be interpreted as representing the total water path and may not adequately represent the true 

IWP either. An additional source of error is that the visible reflectance measured by satellite 

imagers saturates at high COD. In the LaRC cloud retrieval system, this restricts the upper limit 

of the COD retrievals to 150, which translates to an upper limit of about 5000-6000 gm-2 for 

CWP. These errors and limitations need to be minimized or more properly accounted for in order 

to use satellite imager estimates of CWP effectively in both weather and climate applications. 
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To further illustrate the relative importance of these issues for optically thick clouds, 

consider the global monthly mean CERES AQUA-MODIS cloud property retrievals shown in 

Figure 9-12 for April 2013.  The mean cloud fraction is shown in Figure 9 according to the cloud 

top phase.  Liquid clouds (Figure 9a) are most common in the marine stratocumulus regimes, in a 

wide area associated with the Asian winter monsoon extending from the Arabian Sea through 

southern India and China and across the sub-tropical western Pacific Ocean. Relatively frequent 

liquid cloudiness is also found across much of the North Atlantic, the North Pacific, and over the 

southern hemisphere mid-latitude oceans. Liquid clouds are generally less frequent over the land 

areas.  Ice clouds (Figure 9b) are most prevalent across the Intertropical Convergence Zone 

(ITCZ), northern land areas (Canada and Siberia), over the Tibetan plateau, over convective hot 

spots across South America and northern Africa, and coinciding with convection and mid-

latitude storm tracks across the USA and Asia. The corresponding mean CWP for ice clouds 

(IWP) and liquid clouds (LWP) are shown in Figure 10. Retrieval errors are possible for 

overlapping clouds due to the poor assumptions discussed earlier and because the optical depth 

derived from the visible reflectance represents the combined effects of all cloud layers. Since the 

VIS reflectance is interpreted using a single-layer ice cloud model, the ice cloud optical depth 

can be significantly overestimated because the underlying water cloud generally increases the 

reflectance (Minnis et al, 2007). This may lead to an overestimate in the retrieved IWP. On the 

other hand, the vertical homogeneity assumption regarding the vertical profile of ice particle 

size, and the reflectance saturation problem, may contribute to potentially significant IWP 

underestimates.  Errors are also possible in the estimates of the global distribution of LWP 

shown in Figure 9a. This is because these estimates are only comprised of liquid topped clouds.  
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The potentially significant contributions to the global mean values by liquid clouds that occur 

beneath overlapping ice clouds are completely excluded in these estimates.   

For the data shown in Figure 10, the global non-polar (60 N to 60 S) mean values of IWP and 

LWP are 199 gm-2 and 77 gm-2, respectively.  The mean value of the COD is about 10.  While 

the distribution of retrieved values are skewed to the low end, the relative importance of optically 

thick clouds to the total cloud water budget is still significant.  This is illustrated in Figure 11 and 

Figure 12 which show the relative fraction and the contribution to the total water path for clouds 

with COD > 50 and for saturated clouds (COD=150).  These data indicate that while the relative 

fraction of optically thick clouds is fairly low, their relative contribution to the mean cloud water 

path is significant.  For example, along the ITCZ, the fraction of saturated clouds is found to be 

on the order of 5%, while the relative contribution that those clouds make to the total mean CWP 

is found to be as large as 25% or more.  For clouds with COD > 50, the relative contribution to 

the total mean water path is on the order of 50% or more.  In other words, while the fraction of 

optically thick clouds found across the globe is relatively low, these clouds are significant for 

weather applications because of their association with storm systems, precipitation and 

hazardous weather, and they are important for climate applications because they constitute a 

significant mass fraction in the cloud water budget over large regions of the Earth.  Thus, the 

potentially large errors in satellite observations of CWP, which tend to increase with increasing 

COD, should not be ignored. The CWC profiling method developed here is uniquely designed to 

better account for these errors. The goal is to maximize the utility of the information content 

contained in the imager radiances and cloud property retrievals by improving the accuracy of 

quantitative cloud water path estimates from passive satellite data.  
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Two other methods for estimating 3-D cloud fields from satellite data have been developed 

recently but differ substantially from the current method in design and application.  Barker et al. 

(2011) employ a radiation-similarity approach based on thermal infrared and visible channels to 

extend the along-track CloudSat vertical profile information to cross-track MODIS pixels. Their 

technique produces radiatively consistent results when compared to CERES measured top-of- 

atmosphere broadband fluxes, and provides best results to distances of about 20 km away from 

the active sensor data. Miller et al. (2014) develops and employs cloud-type dependent 

information in a similar 3-D cloud characterization that extends the active sensor data to the 

MODIS along-track retrievals. That method is found to outperform type-independent nearest 

neighbor methods at the 200-km range for estimating cloud base height. Some CWC vertical 

structure information are also demonstrated but not validated. 

5.2  Cloud Water Path Parameterization 

Based on the discussion above and the expectation that the passive satellite retrievals of 

CWP are underestimated for optically thicker SLIOW clouds due largely to the vertical 

homogeneity assumption and the reduced sensitivity as the bi-directional cloud reflectance 

saturates in the VIS, a parameterization is developed in this study to help overcome the retrieval 

errors. The parameterization is based on correlations between the GDCP and the ARM 

Continuous Baseline Microphysical Retrieval (MICROBASE) value-added product using a 

coincident dataset constructed over a 5-year period (2006-2010) at the ARM southern great 

plains (SGP) site.  MICROBASE uses a combination of millimeter-wavelength cloud radar 

(MMCR), microwave radiometer (MWR), and radiosonde observations to estimate the vertical 

profiles of the primary microphysical parameters of clouds including the liquid/ice water content 

and liquid/ice cloud particle effective radius. MICROBASE is a baseline algorithm designed to 
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apply to most conditions and surface site locations using a single set of parameterizations and a 

simple determination of water phase based on temperature (Dunn et al., 2011).  A long time 

record is needed to build enough samples from the coincident datasets since the observations 

from the SGP site that are used in MICROBASE represent a single spatial point measurement 

and because deep optically thick clouds are relatively rare as shown earlier. Relative to CloudSat 

and CALIPSO, IWC underestimates in the upper troposphere are certainly possible in the 

MICROBASE dataset since the MMCR may not detect some thin ice clouds due to its sensitivity 

settings which are optimized for operational use, and because the signal can also attenuate in 

optically thick cloud conditions.  Much like the satellite cloud property retrievals, the ground-

based estimates are the result of inverting remote sensing measurements based on assumptions 

regarding the particle habits and size distributions, thus all of these have potentially high 

uncertainties (e.g., Zhao et al., 2012a). The MICROBASE CWC retrieval method uses a simple 

empirical relationship with the MMCR reflectivity and a temperature dependent scaling to 

partition the ice and liquid retrievals between 0°C and -16°C. Zhou at al. (2012b) estimate the 

IWC uncertainty in the MICROBASE product to be 20-110%.  Nevertheless, a potentially 

significant advantage to MICROBASE observations of optically thick clouds is the improved 

sensitivity to cloud water in the lower troposphere since the MMCR is looking up, and because 

the derived profiles are constrained with observations of cloud liquid water obtained from the 

MWR.  Thus, for optically thick clouds, the MICROBASE retrievals may contain observations 

of lower tropospheric cloud liquid and ice water that are not well characterized in the CloudSat 

datasets. 

Figure 13 shows the relationship between the MICROBASE TWP (squares) and IWP 

(circles) with GOES VISST IWP retrievals over the 5-year study period. The error bars represent 
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the standard deviation of the MICROBASE TWP values found in each VISST IWP bin. The 

MICROBASE IWP standard deviations are of similar magnitude but not shown to reduce clutter. 

The one-to-one line and power law best fits are also shown.  It is assumed that the power law fits 

bracket the relationship between the VISST IWP and the true IWP rather than the true TWP. Due 

to the MMCR sensitivity, the ice cloud retrieval uncertainties, the MWR LWP uncertainties in 

optically thick SLIOW clouds, and for reasons that become more apparent later in this study, the 

line fit to the MICROBASE TWP shown here may underestimate the true TWP for the optically 

thicker clouds. The relationship between the MWR LWP and the GOES VISST COD is shown 

in Figure 14 with two power law fits; one for all data points (solid-black) and one that just fits 

the values at the low end with LWP < 300 gm-2 (dashed-black). The standard deviation of the 

LWP values found in each COD bin are approximately as large as the mean LWP values (not 

shown). A third curve shown in blue is the fit to the data presented in Minnis et al. (2007). In 

these analyses, the MICROBASE 20-minute product, which provides cloud property profiles 

averaged every 20 minutes, was used. The GOES retrievals were averaged in a 20-km radius 

circle centered on the ARM SGP surface site and matched with the corresponding MICROBASE 

profile. Only overcast scenes (according to GOES) were included. Periods during which a 

disdrometer at the ground site indicated that precipitation was falling to the surface were 

excluded, mainly to reduce the impact of wet optical windows on the retrievals. The data points 

shown in Figure 13 and Figure 14 were bin-averaged according to the GOES IWP and COD, 

respectively, to decrease the sampling noise.  The results shown here are fairly consistent with 

our expectations that the VISST IWP underestimates the TWP as discerned from the 

MICROBASE data, and that the amount of liquid found within overlapping clouds tends to 

increase with increasing VISST COD.  The latter relationship shown in Figure 14 between COD 
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and LWP agrees with Minnis et al., (2007) (blue curve) for lower values of COD and LWP. That 

study used Visible and Infrared Scanner (VIRS) and Tropical Rainfall Measuring Mission 

(TRMM) Microwave Imager (TMI) measurements of lower water-path clouds (< 300 gm-2) 

acquired over the Tropics between January and August 1998. The curve fit to the data in that 

study shown in blue agrees reasonably well to a curve fit to the VISST/MICROBASE 

comparison when applied to a similar range of values (dashed black curve). Extrapolating these 

curves over the full range however overestimates the potential LWP at higher values of COD 

relative to the values suggested by the MWR retrievals at the ARM SGP site (indicated in 

magenta).  The purpose of these analyses is to develop simple parameterizations that can be 

applied to the VISST retrievals to estimate more realistic values of the IWP and LWP in 

optically thick ice over water clouds, the sum of which gives the true TWP, which is needed as a 

constraint in the profiling technique described in the next section. Based on the correlations with 

the ARM MICROBASE data, the TWP is 

TWP = LWPiow + IWPiow ,      (11) 

where the LWP for ice over water clouds is 

LWPiow = 4.699*COD
1.1 ,     (12) 

which is the curve fit to the data shown in magenta in Figure 14.  The overlapping IWP is 

IWPiow = 0.305* IWP
1.194 .       (13) 

Note that this is the fit for the TWP (solid) curve shown in Figure 13, which is assumed here to 

better represent the overlapping IWP and maximizes the parameterized TWP estimates. The 

impact of this approach to estimating the actual TWP in ice over water clouds is shown in Figure 

15. The values are found to be nearly double the values of the VISST IWP at the high end.   
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The potential to improve global estimates of IWP and LWP from MODIS is illustrated by 

applying the SLIOW parameterizations given by Eqns. 12 and 13 to MODIS cloud retrievals for 

all pixels with COD>10. The new estimates and their differences with the original estimates 

(Figure 10) were derived from the CERES MODIS Edition 4 cloud retrievals during April 2013 

and are shown in Figure 16 and Figure 17, respectively. The difference images highlight the 

impact of the optically thick ice over water cloud overlap parameterizations on the monthly mean 

LWP and IWP estimates indicating significant increases in some areas when compared with the 

original estimates. The new MODIS LWP appear to be much more consistent with microwave 

satellite remote sensing estimates over the world oceans. This is apparent by comparing the LWP 

estimates from April 2013 shown in Figure 16 with the 5-year (2002-2007) all sky LWP 

climatology found in Li et al., 2008, which was constructed from Special Sensor 

Microwave/Imager (SSM/I) shown in Figure 18.  While the time period and averaging 

techniques are different here, the new MODIS estimates and the SSM/I climatology both show 

consistent relative increases in LWP from the stratocumulus regions to the ITCZ and the storm 

track areas that are harder to discern in the original MODIS/VISST monthly mean LWP 

estimates since the latter do not include the liquid found in overlapping cloud conditions. While 

more direct comparisons with other sensors and retrievals remain as future work, this initial 

comparison suggests that these new MODIS retrievals of LWP in single-layer overlapping 

conditions are reasonable. For ice clouds, the largest IWP differences (10-30%) are found over 

the mid-latitude storm tracks and tropical convective areas associated with the ITCZ where deep 

SL cloud systems tend to occur.  Smaller differences are found in areas where both the ice cloud 

fraction and optical thickness are low, although the relative differences are large, on the order of 

30-40% (not shown).  These areas include the large stratocumulus regions found on the west 
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sides of the major continents for example.  It is likely that in these areas the ice clouds are 

associated with ML systems (i.e. thin cirrus overlapping low level stratus). Minnis et al., (2007) 

found that the IWP decreased relative to the traditional VISST estimates when accounting for the 

lower level cloud properties retrieved with a multi-layer technique that incorporated radiative 

transfer calculation for these types of clouds.  Thus, the simple parameterizations applied 

globally here for demonstration purposes and assuming that all clouds are SL, may lead to IWP 

overestimates when ML conditions actually occur.  A better global solution, which remains as 

future work, is to integrate the parameterizations for SLIOW clouds developed here with the ML 

cloud retrieval techniques.  For SL clouds, it is found later that the MODIS IWP retrievals that 

incorporate the SLIOW parameterization are more accurate compared to CALIPSO and 

CloudSat data than the traditional VISST retrievals. These comparisons are presented below.   

 

5.3  Profiling Methodology 

Since CWC profiles are currently impossible to infer directly from passive satellite imager 

data alone, an indirect approach is developed that employs climatological CWC VDF’s, S, 

derived from cloud model and active sensor data as a function of cloud type, and constrains that 

information with satellite imager estimates of cloud boundaries and CWP.  The natural vertical 

distribution of cloud water content is complex and depends on many factors including the phase 

of the hydrometeors, temperature, relative humidity, and the influence of the wind field. An 

attempt to crudely account for these factors is developed here by characterizing the cloud profiles 

by cloud type, namely the CWP and the cloud top temperature (CTT), since these parameters are 

common to the active sensing, passive sensing, and modeling retrieval systems. S characterizes 

the magnitude of the CWC, at each profile level, relative to its vertical integral (CWP), and in a 
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vertical coordinate system defined relative to the cloud top altitude. For each profile, S is 

computed from the CWC as a function of altitude and normalized by the mean CWC found for 

the entire profile as 

S(z*) = CWC(z*)
CWC

,       (14) 

where 

CWC =
CWC(z) dz

CBH

CTH

∫
CTH −CBH

.        (15) 

 

An altitude factor, z*, is also computed to normalize the vertical coordinate, such that 

z*= (z(i)−CBH ) (CTH −CBH ) ,     (16) 

where z(i) represents the altitude of the observation or retrieval. Thus, z* is the depth below 

cloud top normalized to H and is equal to a value of 1 at cloud top and a value of 0 at cloud base, 

while S represents the CWC profile normalized to its vertical mean. The vertical integral of S(z*) 

is unity.  S(z*) is linearly interpolated to a 100-level vertical grid and the mean and standard 

deviation is computed for about 125 cloud types and stored in lookup tables. The maximum 

value of S(z*), Smax, is a measure of the degree of heterogeneity in the vertical profile.  A value 

of 1 for Smax would indicate a perfectly homogenous vertical profile. The relative vertical 

position of Smax is hereafter referred to as Zmax. For example, a vertical profile peaking at the 

mid-cloud level would have a Zmax value of 0.5. Note that the numerator in Eqn. 15 is the CWP 

and the denominator in Eqns. 15 and 16 is the cloud thickness, H. Since these parameters are 

retrieved with some skill from passive satellite data in the LaRC cloud retrieval system along 

with the CTH and CTT, S(z*) can then be used in a simple retrieval system to derive CWC 
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profiles in near real-time from operational satellite data that are constrained with passive 

satellite-derived cloud parameters. Thus, 

CWC(z*) = S(z*)∗CWP
H

,      (17) 

where CWP and H now represent the passive satellite retrievals and along with CTT also define 

the cloud type used to select S(z*) from the lookup table. The actual altitude profile, z(i) is 

computed from the passive satellite-derived CTH and H by inverting Eqn. 16. 

5.4  Climatological Database 

For cirrus clouds, S(z*) is computed from the IWC profiles contained in the CloudSat 2C-

ICE and the CWC-RVOD products. Cirrus clouds are defined here to be all clouds with CBH 

determined from the combination of CPR and CALIOP data to be above the -20°C level. This 

distinction is made primarily for verification purposes so that uncertainties associated with mixed 

phase or lower level liquid clouds and precipitation are minimized. S(z*) is also characterized for 

all clouds using the CWC-RVOD product and using the explicit cloud hydrometeor profiles 

computed in the RAP, since ultimately an accurate cloud profiling solution is sought under all 

cloud conditions. Figure 19 and Figure 20 show the mean and standard deviation of S(z*) for a 

wide range of cirrus cloud types determined from the 2C-ICE data product aggregated for 3-

months (Jan-Mar) in the winter of 2010 over a large area encompassing the CONUS and 

southern Canada (20-55°N; 65-150°W).  This region is referred to hereafter as the study area. 

With the exception of a few cloud types that are poorly sampled, the mean profiles are relatively 

smooth and indicate that the IWC increases with increasing depth into the cloud relative to cloud 

top, peaking below the mid-cloud level before decreasing toward cloud base. The standard 

deviation in the cirrus IWC VDF’s shown in Figure 20 is found to be on the order of 50-60% of 
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the mean for each cloud type, and likely includes the combined effect of the natural variability 

occurring in each cloud type, as well as retrieval errors.  Figure 21 shows the mean of S(z*) 

found for the same time period in the CWC-RVOD dataset.  The results indicate that the vertical 

distribution of IWC found in the RVOD profiles based on the CPR data is more vertically 

homogeneous (lower values of Smax) than those derived from the combination of CPR and 

CALIOP data in the 2C-ICE product.  Thus, the latter may be more realistic since the 2C-ICE 

retrievals include the more tenuous cirrus detected near the tops of clouds by the CALIOP that 

are not detected by the CPR. Otherwise, the two datasets exhibit fairly similar behavior in terms 

of the dependence of the IWC vertical structure on cloud temperature and IWP.  Optically 

thinner clouds with lower IWP are found to be more vertically homogeneous with lower values 

of Smax than the optically thicker clouds that have larger IWP values.  Generally, the maximum 

IWC is found to be at a lower altitude (with lower values of Zmax) within colder clouds and in 

clouds with higher values of IWP.  These are well known characteristics of ice clouds, due to the 

sedimentation of larger ice crystals, and have been observed in aircraft observations for several 

decades and are now reinforced by global analyses of cirrus cloud microphysical retrievals from 

CloudSat and CALIPSO (e.g., Ham et al., 2013). 

 Figure 22 depicts the mean CWC VDF’s derived from the CWC-RVOD product for all SL 

clouds, including deeper SLIOW clouds and warm liquid water clouds. In this figure, the impact 

of precipitation size particles and the CPR attenuation on the CWC retrievals is apparent, as there 

is a dramatic and unrealistic shift in the mass peak to higher levels in the cloud types that have 

higher CWP’s. Note that the CloudSat data products include precipitation flags, which could be 

used to help eliminate clouds with precipitation size particles from this analysis.  The problem 

with that approach is that it effectively eliminates most of the naturally occurring optically thick 
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clouds that are of particular interest in this study.  Therefore, to better estimate the potential 

vertical distribution of CWC in deep optically thick clouds, a hybrid set of VDF’s are derived by 

combining the information on ice clouds from CloudSat and CALIPSO in the upper troposphere 

(at altitude levels above the -20°C level) with information from cloud models in the lower 

troposphere. In the initial solution, S(z*) is developed from the RUC cloud analyses at 18 UTC 

between 1 January and 31 March, 2010.  The RUC S(z*) climatology is than employed to derive 

CWC profiles from one month (April 2010) of nadir CERES MODIS cloud properties that are 

collocated with CALIPSO and CloudSat CWC retrievals. For optically thick clouds with COD > 

10, the MODIS profiles are derived using Eqn. 17 after employing Eqns. 11-13 to estimate the 

TWP for each pixel. At cloud levels with temperatures below -20°C, the MODIS CWC values 

derived with the RUC climatology are replaced with the collocated CloudSat or CALIPSO 

retrieval (CALIPSO has precedence) to create a hybrid profile.  The hybrid profiles are then 

renormalized and aggregated as a function of cloud type as before. Figure 23 shows the 

RUC/CloudSat/CALIPSO hybrid climatology for S(z*).  For cloud types with lower CWP’s 

below about 1000 gm-2, the CWC-RVOD and the hybrid curves exhibit fairly similar behavior 

although the hybrid profiles are slightly less homogeneous and have Zmax values approximately 

10% higher in the normalized altitude. Since optically thin cold clouds were excluded in the 

hybrid climatology, some of the cloud types with cold CTT values and low CWP are missing 

relative to the CWC-RVOD climatology shown in Figure 22.  This is of no consequence in the 

actual application of the technique to imager cloud properties, since a separate set of S(z*) curves 

were developed for cirrus clouds (shown earlier).  For cloud types with larger CWP, the hybrid 

climatology differs substantially from the CWC-RVOD climatology indicating more realistic 

values for Zmax at or below the mid-cloud level for most cold clouds.  A transition in Zmax from 
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low to high values as the CTT increases is also evident and quite realistic as the cloud types 

transition from ice to liquid since LWC profiles are well known to increase with increasing 

altitude in a manner more typical of adiabatic ascent.  

 In the next section, the application of this technique is demonstrated with MODIS data and 

validated in the upper troposphere with CloudSat and CALIPSO data.  

5.5  MODIS CWC Retrievals and Verification 

In this section, the profiling method is evaluated with CloudSat and CALIPSO IWC 

retrievals in the upper troposphere.  These retrievals also have uncertainties (e.g., Heymsfield et 

al., 2008). CWC profiles are derived from the MDCP by applying Eqn. 17 to the retrieved CWP 

and H, and applying the appropriate values of S(z*) from lookup tables.  For ice-topped clouds 

with a MODIS-derived COD <=10, both the 2C-ICE and the CWC-RVOD cirrus S(z*) 

climatologies shown in Figure 19 and Figure 21 are tested. For all other ice-topped clouds, the 

hybrid climatology shown in Figure 23 is employed. For liquid-topped clouds, LWC profiles are 

also derived based on the RUC component of the hybrid climatology but these are not tested here 

since a suitable verification dataset has not been identified for those types of clouds. Thus, the 

validation presented here is focused on ice-topped clouds to take advantage of the CloudSat and 

CALIPSO profiles. The CERES C3M data product is used to validate the profiling method. C3M 

merges CloudSat, CALIPSO, CERES, and MODIS cloud and radiation parameters (Kato et al., 

2010). A full-resolution (1-km) intermediate product that is available upon request from the 

CERES program at NASA LaRC is used to make an initial assessment of the profiling technique. 

This product includes the CERES MDCP, the CloudSat CWC-RO, and the CALIPSO CPro 

cloud properties.  While other radar and lidar based IWC datasets are available (e.g., the 

CloudSat 2CICE product, or the raDAR/liDAR (DARDAR) product by Delanoe and Hogan, 
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2008, 2010), the retrievals contained in the C3M intermediate dataset are particularly convenient 

since the data are already geo-located at full-resolution and packaged with the CERES MDCP. 

 Figure 24 shows a comparison of cirrus cloud IWC retrievals derived from MODIS and from 

the combination of the coincident CALIPSO and CloudSat retrievals contained in the April 2010 

C3M dataset over the CONUS study area.  Cirrus clouds are defined like before as having cloud 

base altitudes above the -20°C altitude level.  The mean and relative frequency distribution of the 

retrieved IWC values are computed in 1-km altitude bins and aggregated in bins according to a 

range of MODIS derived COD as indicated in the figure.  The plots on the left side show the 

mean IWC profiles derived from MODIS (red) and CALIPSO+CloudSat (black), along with the 

MODIS IWC frequency distribution.  The plots on the right side show the same mean profiles 

but are plotted with the CALIPSO+CloudSat (hereafter CC) IWC frequency distributions.  The 

frequencies are normalized to the maximum number of occurrences and therefore range from a 

value of 0 to 1 as indicated by the colorbar. Similar results are shown in Figure 25 - Figure 28. In 

Figure 24, the MODIS profiles are derived using the 2CICE climatology of S(z*) and the 

agreement with the CC profiles found to be somewhat mixed. Good agreement is found 

throughout the vertical column for the lowest COD bin but for higher COD’s, the best agreement 

is found only at lower altitudes. The larger differences found at the higher altitudes, which are 

almost an order of magnitude at 12 km for the higher optical depth clouds, are most likely due to 

the much higher sensitivity that CALIOP has to the optically thinner clouds and poor cloud top 

height assignment in the MODIS retrievals (MODIS cloud top heights are too low). This is also 

apparent in the IWC frequency distributions shown in the comparisons. For example, in the plots 

shown for the COD bin ranging from 3 to 6, there is a much higher frequency of clouds with 

larger optical depths detected by CALIPSO than are derived with the MODIS profiling 
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technique. Only slightly better agreement is found in Figure 25 and in the statistics shown in 

Table 3a for the cirrus profiles derived from MODIS using the CWC-RVOD S(z*) climatology. 

While the 2CICE climatology may be more accurate since it includes the CALIOP data, the 

slightly better agreement found using the CloudSat climatology might simply be due to the fact 

that MODIS and CloudSat have more similar sensitivities near cloud top. To explore this further, 

the MODIS profiles were derived again using the CWC-RVOD climatology but this time they 

were constrained with the CloudSat cloud boundaries (rather than those derived from MODIS) 

and compared only with the CloudSat CWC-RO IWC retrieval.  These results are depicted in 

Figure 26, which shows much better agreement in the mean IWC profiles derived from MODIS 

and CloudSat over a wide range of COD, and particularly at high altitudes where the differences 

are much less than an order of magnitude as found before.  Thus, the IWC differences found for 

the passive satellite cloud profiling technique applied to cirrus and compared to the active sensor 

retrievals are due largely to errors in the imager cloud boundary estimates, particularly CTH, and 

to the much higher sensitivity to thin cirrus by the CALIOP.  MODIS and the CPR have similar 

sensitivities as indicated by the mean IWC and IWP comparisons summarized in Table 3a and 

Table 3b. Despite the fact that there are large differences in IWC found at higher levels in the 

profile comparisons that include CALIPSO data, there are fewer clouds at these levels and the 

overall mean cirrus IWC and IWP values calculated from the passive and active sensor retrievals 

(see Tables 3a and 3b) are found to differ by less than 30%. In addition, the MODIS IWP is 

found to compare much better with CloudSat than with the combined CC IWP estimates, which 

tend to have higher values, particularly for the optically thicker clouds.  This suggests that, for 

cirrus clouds, any IWP underestimates in the CERES MODIS Ed4 cloud properties are more 

likely due to instrument sensitivity issues rather than retrieval errors due to the vertical 
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homogeneity assumption. The mean cloud top height comparison shown in Table 3c further 

supports this possibility since the MODIS values tend to agree more closely with CloudSat than 

with CALIPSO.  

 For the same time period and over the same study area, the profiling technique was evaluated 

for optically thick clouds (COD>10) in a similar manner.  The results of these comparisons are 

shown in Figure 27 and Figure 28. While a full range of optically thick clouds are assessed in 

these comparisons, including deep convective clouds, only IWC retrievals at altitudes above the -

20°C altitude level are considered here, due to the cloud phase uncertainty at warmer 

temperatures and the CPR attenuation problem.  The IWP computed above this level is hereafter 

referred to as IWP253. Good agreement is found between the passive and active sensor profiles 

over a wide range of COD demonstrating the potential for accurately characterizing the vertical 

distribution of cloud IWC from passive satellite data using the methods developed in this study.  

In particular, note the high level of agreement in the mean values of the IWP253 and IWC 

denoted in the plots and also tabulated in Table 4a and Table 4b.  The mean IWC derived from 

MODIS is within 5-10% of the mean CC values in each COD bin, and the agreement on average 

for all clouds is 1.5%. Good agreement is also found in the mean IWP253 inferred from the CC 

data and from the MODIS profiles, both of which increase in a similar manner with increasing 

COD.  Thus, the variability in the mean upper tropospheric IWC retrieved from MODIS appears 

to track the observations from the CPR over a wide range of COD quite well. This can be seen in 

the IWP comparison shown in Table 4b, which also compares the values derived in the profiling 

technique, with and without the SLIOW CWP parameterization, to those derived from the CC 

profiles. Without the parameterization, the mean values of the IWP253 retrieved from MODIS 

(Hybrid0 in Table 4b) are significantly less than those found for the CC retrievals. Two 
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important factors that appear to work well together in the profiling technique for optically thick 

clouds, are the RUC model CWC VDF’s (S(z*)) and the SLIOW TWP parameterization. In other 

words, the climatological characterization of the cloud analyses found in the RUC model, 

appears to partition the upper tropospheric IWP from the total mass quite well provided that the 

traditional MODIS cloud property retrievals are adjusted using the TWP parameterization for 

SLIOW clouds.  

 Some discrepancies are apparent in the mean vertical profiles shown in Figure 27 and Figure 

28. For example, it appears that for clouds with COD less than about 40, the current method 

tends to overestimate the IWC at high altitudes and underestimate at lower altitudes relative to 

CloudSat and CALIPSO retrievals. For clouds with COD greater than 80, the opposite behavior 

is found. While the S(z*) climatology employed here is the hybrid developed from the RUC and 

tuned with CC data, it does not appear that the tuning approach made a significant impact on the 

derived vertical structure. While the current method is producing good results, better agreement 

between the average vertical profile of IWC derived from passive and active sensors may be 

possible with additional tuning. This will be revisited in a future study.  

Figure 29 and Figure 30 show a comparison between the IWC retrieved from the GDCP 

(GOES-13) using the profiling method and that obtained from in-situ measurements collected by 

a sampling probe mounted on a research aircraft. These data were collected on 13 and 21 

September 2013 using a 2D-S (stereo) optical array cloud particle imaging probe deployed from 

the wing tip of a DC-8 aircraft during the (SEAC4RS) field campaign. The measurement range 

for the 2D-S is from 10 µm to 3 mm and the detrimental effects of ice crystal shattering on the 

measurements are minimized with an anti-shattering tips and particle inter-arrival time 

algorithms. The mean values used in the comparison were computed by averaging the aircraft 
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measurements over distances of 5 km. The IWC profiles were derived from mean values of the 

GDCP, which were computed by distance weighting the retrievals for the 4 nearest 4-km GOES 

pixels to the central location of the aircraft average. Since the GDCP were generally available 

every 15 minutes during the experiment, the matched satellite and aircraft estimates are within 

+/- 8.5 minutes.  Also shown here is the VIS satellite imagery taken during the middle of the 

flights with a flight track overlay and the corresponding altitude trace color coded according to 

the measurement time. The level of agreement in the IWC values is remarkably good overall, 

particularly in the areas that appear to be the most homogeneous in the satellite imagery. The 

satellite retrievals and the aircraft data also track each other well over a wide range of values at 

times in which the aircraft is ascending and descending (profiling).  This can be seen, for 

example, near 1700 and 1900 UTC on 19 September (Figure 29) and near 1715 UTC on 21 

September (Figure 30).  The largest discrepancies between the satellite and aircraft IWC values 

appear to be in the most heterogeneous areas seen in the VIS imagery (e.g., near 21-22 UTC on 

13 September), and found in the satellite CWP field not shown here (e.g., near 22 UTC on 21 

September). 

Considering the uncertainties in all of the retrieval techniques, the different instrument 

sensitivities, and the potential sampling mismatches, the level of agreement found for the IWC 

estimates derived using the passive satellite profiling technique is very encouraging.  In the next 

section, the focus for the profiling technique, and its verification, shifts to the lower troposphere 

and the potential to estimate the flight icing threat to aircraft within SLIOW clouds. 
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6 The Flight Icing Threat to Aircraft 

6.1 Background 

The existence of liquid water at sub-freezing atmospheric temperatures is a natural 

phenomenon that poses a significant threat to aviation. In-flight icing (IFI) occurs when super-

cooled liquid water (SLW) freezes on the airframe and alters the airflow, which can increase 

drag, reduce lift and induce control problems. High concentrations of SLW and/or the presence 

of super-cooled large droplets (SLD), freezing drizzle or freezing rain are particularly dangerous 

to aircraft.  According to the European Aviation Safety Agency, icing was the primary cause of 

80 accidents, 263 fatalities, and was a contributing factor in many more events worldwide over 

the last ten years (http://www.ainonline.com/aviation-news/aviation-international-news/2013-12-

04/icing-research-struggling-physics). While no aspect of aircraft operations is immune to the 

icing threat, the greatest impacts are on General Aviation (GA) operations and smaller aircraft, as 

~80% of IFI related accidents between 2006-2010 involved GA aircraft (Appiah-Kubi, 2011).  

Despite improvements in ice protection systems, even the most advanced aircraft system can 

perform inadequately in heavy icing conditions.  In Alaska, many of the commercial airlines that 

operate in the state are not equipped with the same deicing capability available on many of the 

major airliners. IFI can also impact efficient flow within the National Airspace System (NAS) 

since portions of a busy airspace may be rendered unusable due to IFI conditions.  Thus, aviation 

weather forecasters, traffic flow managers, pilots, and others need to know where and when icing 

can occur.   

Accurate diagnoses and forecasts of the meteorological conditions associated with aircraft 

icing requires identifying the location and vertical distribution of clouds with super-cooled liquid 

water droplets, as well as the characteristics of the droplet size distribution. Forecasters use NWP 
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model output, pilot reports (PIREPS), and rules of thumb based on experience, to estimate the 

potential for icing conditions. The Aviation Weather Center (AWC) in Kansas City, for example, 

provides icing forecasts for the contiguous United States in the form of airmen’s meteorological 

information (AIRMETs) and significant meteorological information (SIGMETs). These 

constitute a primary decision-making tool used by pilots and weather briefers to avoid hazardous 

weather. Textual and graphical AIRMET advisories are issued every 6 h by AWC that forecast 

areas with the potential for moderate icing at 3-hourly intervals for the following 12 hours unless 

amended by an unscheduled AIRMET. Icing AIRMETs are created using many weather data 

sources including temperature and humidity fields from numerical weather prediction (NWP) 

models, satellite imagery, and existing pilot reports of icing. SIGMETs are warnings issued as 

necessary for known severe icing based solely on current pilot reports. Both AIRMETs and 

SIGMETs are polygon in shape and widespread in the horizontal, covering areas of at least 3,000 

square miles and encompassing a vertical range, usually from the freezing level to a specified 

altitude.  Forecasting approaches based on NWP model diagnosed atmospheric temperature and 

moisture structure (Schultz et al., 1992; Thompson et al., 1997a) are widely used by AWC and 

other aviation weather forecasters because they do a reasonably good job of identifying the 

potential for icing conditions over the broad areas characteristic of AIRMETs (Brown et al., 

1997). While these methods capture a large percentage of icing PIREPS, they also tend to over-

warn, even indicating icing conditions in cloud-free areas (Brown et al., 1997, Thompson et al., 

1997a,b). Furthermore, cloud microphysical properties that contribute to the potential intensity of 

aircraft icing are often highly variable over small scales and more difficult to accurately diagnose 

and forecast with model-based approaches alone. Since aircraft operations could benefit from 

improved resolution of icing conditions, PIREPS and other observational information, including 



 

 

54 

satellite data, are needed to improve diagnoses and forecasts of the flight icing threat. PIREPS 

are valuable because they provide direct evidence for airframe icing and its severity. However, 

PIREPS are rare or non-existent over the oceans and other parts of the world where accurate 

icing diagnoses and forecasts are also needed. Even over the relatively data rich contiguous 

United States (CONUS), PIREPS have certain characteristics that limit both their operational 

utility and their utility for icing algorithm verification.  These limitations include spatial and 

temporal biases related to commercial flight schedules and proximity to major airports, as well as 

subjectivity and haphazardness (Brown et al., 1997; Brown and Young, 2000). 

Operational satellite imager data have been used to improve icing diagnoses since they 

provide frequent observations of clouds at high spatial resolution. The early model-based 

approaches were improved by using satellite data to eliminate cloud-free areas and areas with 

warm cloud tops (Thompson et al., 1997b). Ellrod and Nelson (1996) developed a stepwise 

screening technique to infer the presence of cloud top SLW directly from the satellite radiances 

provided that the clouds are not obscured from view by higher altitude ice clouds. Bernstein et al. 

(2005) describe the Current Icing Potential (CIP), an advanced icing diagnosis method that 

blends relevant data from multiple sources, such as satellite, surface, radar, lightning, and routine 

Pilot Reports (PIREPs), with temperature, relative humidity, SLW, and vertical velocity fields 

produced by numerical models.  The CIP is operational at the AWC and available via the NWS 

Aviation Digital Data Service. The NOAA RUC, and more recently the RAP, provides the model 

inputs used in the CIP. The RUC and RAP utilize an advanced assimilation system that 

incorporates a variety of cloud observations, and employs an explicit cloud microphysics scheme 

developed to improve forecasts of SLW (Reisner et al., 1998; Thompson et al., 2004).  As 

discussed earlier, clouds remain relatively poorly diagnosed by models and often don’t 
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characterize accurately the vertical distribution of cloud water with respect to observations at the 

smaller scales needed for pilots to avoid adverse weather. With respect to SLW, explicit cloud 

analyses in models have been found to capture less than 50% of pilot-observed icing (e.g., 

Brown et al., 2001). In the CIP, satellite data are used to identify the location of clouds 

(Thompson et al., 1997b).  However, more quantitative information on icing conditions available 

from satellite data are not exploited in CIP or any other operational approach, despite the 

capability to retrieve cloud physical properties (e.g., Nakajima and King, 1990; Minnis and 

Smith, 1998; King et al., 2003; Minnis et al., 2011a) with significant accuracy, including cloud 

boundaries (Smith et al., 2008; Minnis et al., 2008; Sun-Mack et al., 2013), water path (Mace et 

al., 1998, 2005; Painemal et al., 2012), particle size (Mace et al., 2005; Painemal and Zuidema, 

2011), and the dominant hydrometeor phase near cloud top. Thus, satellites offer a unique and 

critical vantage point to observe the physical characteristics of clouds associated with weather 

hazards, such as icing conditions, with accuracies not currently realized in model based 

approaches. To illustrate, consider the cloud products derived from GOES-13 and GOES-15 

shown in Figure 31, which depicts the retrieved cloud top phase, CET, COD, H, CER and LWP. 

These parameters provide unique information about clouds that can be used to infer the potential 

for aircraft icing at the pixel resolution of the satellite imager, typically 1 to 4 km. For example, 

the cloud top phase, combined with CET, diagnose the presence of SLW directly from the 

satellite data.  In this example, a wide range of cloud conditions is found to be associated with a 

broad area of low pressure centered over southeastern Missouri and southern Illinois. A large 

area of SLW (denoted by the cyan color in Figure 31a) is detected over parts of the Midwest and 

southeastern states. The corresponding SLW droplet sizes and their densities can be inferred 

from the CER and LWP images shown in Figure 31e and Figure 31f, while the cloud top height, 
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CTH (not shown) derived from CET, the cloud thickness, and knowledge of the freezing level 

provide information on the upper and lower altitude boundaries for the potential icing layers. 

Thus, geophysical cloud parameters derived from satellite data are useful for accurately 

diagnosing potential icing conditions because (1) they provide information on the likely location 

for SLW, (2) their ‘parameter space’ is closely related to the meteorological factors associated 

with aircraft icing – namely, the cloud temperature, the super-cooled liquid water content and the 

droplet size distribution (Rasmussen et al., 1992), and (3) they constitute the only observations 

available at the scales needed to resolve dangerous icing conditions over wide areas for the 

aviation community.  

6.2  Satellite Algorithms 

6.2.1 Version 1: Solution for low clouds 

The initial method to determine the potential flight icing threat to aircraft, hereafter S-

FITv1.0 (Smith et al., 2012, attached here in Appendix A.1), was developed for clouds with 

which the presence of SLW can be inferred directly from the satellite products using the 

combination of the retrieved cloud top phase and CET.  These are typically lower level clouds 

with SLW tops and CTH less than about 4 km. The satellite-derived cloud properties derived for 

these types of clouds were matched with icing PIREPS using data collected over several years to 

determine relationships between the satellite data and icing conditions reported by pilots. While 

there are eight possible intensity categories available for pilots to characterize icing intensity, 

most reports fall into just a few categories.  Therefore, the icing PIREPS were reclassified into 

two intensity categories, either light or MOG.  The light category contained any icing intensities 

reported with trace to light icing conditions, while the MOG category contained all reports with 

light-moderate or greater conditions.  
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Relationships to determine the probability for icing based on the retrieved super-cooled LWP 

(SLWP) and CER, and intensity thresholds based on the retrieved SLWP, were developed over 

snow and snow-free surfaces. Larger values of SLWP and CER were found to be associated with 

a higher probability for encountering icing conditions and with greater intensities. Optically thin 

clouds are eliminated from the icing threat based on the retrieved COD, which helps to reduce 

over-warning.   

An example of the SFITv1.0 product derived from the data shown in Figure 31 is provided in 

Figure 32. The FIT is color-coded for display purposes as indicated. Figure 33a-c depicts the 

satellite product output at three different times during the course of the day (1415, 1745, and 

2045 UTC, respectively). Also shown in Figure 33d-f are the icing PIREPS that were filed near 

the same time as the satellite analyses. Figure 33g and Figure 33h show the g-AIRMET icing 

advisories valid at 1800 and 2100 UTC.  Smith et al. (2012) found that the S-FITv1.0 algorithm 

has considerable skill in detecting and discerning light from MOG icing conditions provided 

there are no overlapping high clouds. In the satellite icing analyses shown here, the red colors 

indicate areas where moderate or greater icing conditions are possible.  The purple and blue 

colors indicate lower probabilities for trace to light icing conditions.  The satellite analysis 

clearly depicts icing conditions early in the day across the southern states extending from eastern 

Texas into Missouri, Arkansas and Mississipi. Only a few light icing PIREPS are evident in 

these regions in the early hours. As the day progressed, the MOG icing areas found in the 

satellite analyses expand and advect eastward and a number of MOG PIREPS occur that confirm 

the satellite analyses. The traditional forecast methods at AWC, however, completely miss the 

significant icing that is occurring in the southern states. In fact, it isn’t until a number of MOG 

icing reports have occurred that AWC issues an updated advisory to include these areas at 2100 
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UTC. Clearly, in this case, the satellite analysis provides advanced and accurate warning of the 

icing conditions associated with the low-level SLW clouds that were later experienced and 

reported by aircraft pilots. An interesting aspect of this case is that the warnings that were issued 

by the AWC earlier in the day are in areas that appear in the satellite analyses to be influenced by 

deep ice over water clouds associated with the winter storm system.  The SFITv1.0 algorithm 

does not provide an icing estimate in these areas because the lower level SLW is obscured from 

direct view by the satellite imager by high-level ice clouds. These areas are designated as 

unknown or indeterminate in the SFITv1.0 analyses (white areas in Figure 32 and in Figure 33a-

c).  Based on correlations between the satellite-derived cloud properties and thousands of icing 

PIREPS, it appears that these ice over water cloud conditions contain some 30-50% of the icing 

reported by pilots, which are not captured by the SFITv1.0 method. Thus, the traditional forecast 

methods, which tend to capture some of the icing associated with these deep cloud systems, and 

the SFITv1.0 analyses, which works well for low clouds, are complementary to each other. 

Nevertheless, based on the relatively poor resolution of cloud and icing conditions found in 

model analyses and forecasts, and in order to enhance the utility of the satellite icing products 

and provide a more complete solution to the problem under a wider variety of cloud conditions, a 

second-generation satellite algorithm is developed and described here.  The primary goals are to 

further entice the aviation weather community to utilize satellite-based icing products by 

improving icing diagnoses in all cloud conditions, including ice over water cloud systems, and 

by improving the detection of the more severe conditions that are most dangerous to aircraft. 
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6.2.2 Version 2: New method with solutions for all clouds 

To increase the satellite icing detection capability in all cloud conditions and to address the 

potential for detecting severe icing conditions, the legacy SFITv1.0 algorithm is enhanced in the 

following ways in the SFITv2.0 algorithm: 

1. A ‘Heavy’ icing category is added to identify clouds that potentially contain SLD. 

2. A multi-layer retrieval algorithm is employed to determine the icing threat in SLW 

clouds identified beneath overlapping high-level cirrus clouds. 

3. A super-cooled liquid water content profiling technique is developed and employed to 

determine the icing threat embedded within deep ice over water clouds typically 

associated with storm systems. 

The first two enhancements use existing satellite products, are simple to implement and impact a 

relatively small percentage of the clouds found to have the potential for icing. The third 

enhancement is more complex and has a much greater areal impact on the icing threat 

determined from satellite data. These enhancements are described briefly below. 

6.2.2.1 Inferring Heavy To Severe Icing Conditions 

In the SFITv1.0 algorithm, the icing threat estimate is most heavily dependent on the 

retrieved SLWP. Despite the fact that larger droplets are known to often be associated with 

higher icing intensities (Bernstein et al., 2007), only weak dependencies were found for CER 

when compared to thousands of icing intensity PIREPS in a wide range of cloud conditions. This 

may be due to the uncertainties associated with icing PIREPS (e.g., geo-location errors, 

subjectivity), the fact that the retrieved CER can be highly variable and occasionally 

contaminated with thin cirrus, or other factors. Detailed case studies of severe icing events, 

however, indicate that a stronger relationship exists and should be exploited. We have examined 
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a number of severe icing PIREPS and the corresponding CER values, as well as those retrieved 

in the vicinity of several recent aviation accident sites. The results suggest that larger values of 

CER are indeed often associated with the more severe icing found in lower level clouds and thus 

perhaps indicative of SLD.  Based on these case studies, several of which are presented in the 

validation section, the flight icing threat is classified as ‘Heavy’ in the SFITv2.0 algorithm for 

SLW-topped clouds with CER values exceeding 13.5 µm.  SLD is also known to be common in 

deep convective clouds, which aircraft typically try to avoid. Since avoidance is not always 

possible, particularly in areas void of weather radar coverage, the satellite retrievals indicating 

cold, optically thick, opaque cloud conditions with CET < -35°C, COD > 100, and 6.7-11 µm 

brightness temperature differences (BTD) greater than -1.0°, are also classified as ‘Heavy’ icing 

areas.  These thresholds were chosen based on visual interpretations of the satellite retrievals in 

several case studies combined with visual correlations with radar imagery, which are used to 

identify the location of core convection.  

6.2.2.2 Inferring The Flight Icing Threat In Overlapping Cloud Conditions 

A unique feature found in the LaRC cloud property retrieval system is a multilayered (ML) 

cloud retrieval capability. This ML retrieval uses multiple imager channels to retrieve properties 

for thin-cirrus-over-thick-water cloud systems (e.g., Chang et al., 2005; Watts et al., 2011) and is 

based on the 2-channel Modified CO2 Absorption Technique (MCAT) developed by Chang et al. 

(2010a, 2010b). It provides estimates of CET and emissivity ε for the upper cloud and a radiating 

temperature for the background. The MCAT ε retrieval is compared with that corresponding to 

the COD retrieved with the single-layer (SL) method (Chang et al., 2010b). If significantly 

different, the pixel is classified as ML and the lower and upper cloud properties are retrieved 

iteratively. In the SFITv2.0 algorithm, the icing threat is determined by applying the SFITv1.0 
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relationships to the cloud property retrievals for the underlying cloud, if CET < 273K. Thus, the 

temperature and LWP retrieved for the lower layer cloud largely determines the flight icing 

threat in these cloud conditions.  The MCAT also returns a confidence factor pertaining to the 

accuracy of the cloud overlap detection. Reasonably good agreement has been found in the 

tropics between the ML retrievals from MODIS and multi-layered cloud systems characterized 

by the combination of CloudSat and CALIPSO active sensor data. The algorithm is being 

validated and refined for application to GEOsat. The algorithm is currently only applied to the 

most confident ML clouds detected by the MCAT, which is a relatively small percentage of ice 

cloud pixels. In a future version of the SFIT algorithm, it is expected that the refined version of 

the MCAT will provide a larger percentage of confident ML retrievals and thus improved 

detection of icing conditions beneath thin cirrus.   

6.2.2.3 Inferring The Flight Icing Threat in Single Layer Ice Over Water 

Clouds 

Thus far, a SFIT capability has been described for lower level SLW-topped clouds in SL and 

some ML cloud conditions with confident ML signatures.  All remaining clouds are assumed to 

be either warm (CET > 273K), optically thin, or cold optically thick ice over water clouds. Only 

the latter pose a potential icing threat. These types of clouds are assumed to be SL (i.e. SLIOW 

clouds) and are generally identified by the red areas which indicate ice phase tops shown in 

Figure 31a, and from the corresponding COD retrievals shown in Figure 31c. In order to 

determine the potential for icing conditions within SLIOW clouds, a new methodology is 

developed that fuses a variety of relevant information available from multiple sources. Cloud 

properties derived from satellite imager data provide the near real-time (NRT) observations 

needed to constrain the method over large areas with the high horizontal and temporal resolution 
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desired by the aviation community.  Vertical resolution is also desired since SLIOW clouds have 

significant vertical extent. This is achieved by applying the CWC profiling technique, developed 

above, that employs cloud vertical structure information predicted by cloud models and derived 

from active sensor observations and constrains it with NRT satellite retrievals of CWP and cloud 

boundaries. While the profiling method described thus far provides estimates of total CWC 

profiles, knowledge of the potential for SLW and of the SLWC is needed in order to infer the 

potential FIT.  In this study, that information is also acquired in a climatological fashion from the 

RUC and RAP cloud analyses, since ice and liquid hydrometeors are explicitly resolved 

separately. The primary objectives for this approach are to estimate the potential for icing 

conditions in the vertical profile and the most likely maximum icing intensity.   

In order to accomplish this, three additional sets of vertical distribution functions (VDF’s) are 

derived from the satellite data and the cloud model output a-priori, and binned as a function of 

cloud type in a manner similar to the approach used to develop S(z*).  These VDF’s provide 

climatological cloud-type dependent information that are used to estimate; (1) the probability for 

cloud, PCLD(z), (2) the probability for SLW, PSLW(z), and (3) the LWC, LWC(z). The 

information is stored in lookup tables and applied in a NRT retrieval system designed to estimate 

the potential for icing conditions embedded within SLIOW cloud systems, and to estimate the 

icing altitude boundaries and a composite or maximum icing intensity for the layer.  

Figure 34 shows the first set of VDF’s that describe the probability of occurrence for cloud 

(PCLD) as a function of altitude relative to the cloud boundaries derived from MODIS imager 

data, and as a function of cloud type, which is defined by the CET and COD retrieved from 

MODIS. These are derived with the intermediate, full-resolution C3M dataset by matching one 

month (April 2010) of the CERES MODIS SL cloud property retrievals with coincident cloud 
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boundaries derived from CloudSat Cloud Profiling Radar (CPR) data taken over the study area.  

The level 2 Cloud Scenario Classification Product (2B-CLDCLASS) available from the 

CloudSat Data Processing Center is used here and assumed to provide accurate ground truth for 

the occurrence of cloud in up to 10 layers in the vertical column. For each coincidence that 

MODIS and CloudSat both detect cloud, PCLD is computed separately on a fixed grid for three 

regions in the vertical column as a function of distance: (1) above the MODIS cloud top, (2) 

below the MODIS cloud base, and (3) within the MODIS SL cloud top and base.   Thus, the 

vertical grid is defined with reference to the MODIS cloud boundaries. For the MODIS cloud 

free regions in the vertical profile, the vertical grid is defined in 100-meter altitude increments 

above and below the MODIS cloud boundaries.  For the cloudy region, the vertical grid is 

defined for 100 levels as a function of distance below cloud top and normalized by the cloud 

thickness so that the probabilities can be computed as a function of the relative position within 

the cloud and properly aggregated. The PCLD VDF’s are constructed from the CloudSat data by 

computing the frequency of occurrence for cloud at each level of the vertical grid. The results 

shown in Figure 34 indicate that the imager-based accuracies for defining the vertical profile of 

cloud occurrence, increases for optically thicker and colder clouds.  Perfect imager retrievals 

relative to CloudSat would yield PCLD values of 100% between the indicated top and base 

altitudes and values of zero at all other levels in the vertical profile. Uncertainties between the 

MODIS cloud boundaries for the warmest CET bin (not relevant for icing) appear to be largest 

(lowest probabilities) in this approach because the altitude values are relatively small numbers 

(i.e., a 0.5-km cloud height retrieval error translates to a 50% uncertainty for a cloud at 1 km, but 

only a 5% uncertainty for a cloud at 10 km). Mid-level clouds are found to be more uncertain 

than high cold clouds, as expected, since these data often include overlapping cloud systems and 
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the cloud top height retrieved with a SL assumption tends to lie between the two layers. Thus, 

the occurrence of mid-level clouds is overestimated in the imager retrievals based on a SL 

assumption, which results in relatively large values of PCLD above the CTH. The information 

shown in Figure 34 is stored in lookup tables and provides an initial method to estimate the 

vertically resolved probability for cloud from the imager-based cloud parameters. Additional 

improvements are possible but remain as work planned for a future upgrade. For example, the 

ML technique described earlier could help reduce the mid-level cloud bias but validation studies 

for the current ML method implemented in the LaRC NRT system have just begun. Model 

analyses of temperature and relative humidity profiles have also been shown to be useful for 

characterizing cloud vertical structure (Minnis et al., 2005). Methods to merge that information 

with the imager cloud properties and perhaps cloud ceiling observation over the CONUS could 

be developed and validated with CALIPSO and CloudSat data to further improve icing diagnoses 

in overlapping cloud conditions. This concept of a vertically resolved cloud probability field 

from operational satellite data could also be useful for other applications such as the 4D weather 

cube, and to improve cloud building and clearing in numerical cloud analyses.   

Figure 35 depicts the probability for SLW (PSLW) and the median SLW mass fraction 

(FSLW) as a function of temperature for clouds with CTT < -40°C, and over a wide range of 

CWP values.  These VDF’s were derived from the five cloud water mixing ratios (liquid, ice, 

rain, snow and graupel) produced and cycled in the RAP cloud analysis system during the period 

between 1 January and 31 March, 2010. Here, CTT is the cloud top temperature defined as the 

highest model level with a non-negligible cloud mixing ratio. A non-negligible mixing ratio for 

either liquid or rain at model levels with temperatures below freezing indicates the existence of 

SLW.  FSLW is computed as the ratio of the SLWC computed from the liquid hydrometeor 
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mixing ratios (liquid + rain) to the total CWC.  The total CWC is computed from the sum of all 

five species mixing ratios and the CWP is the vertically integrated CWC over all cloudy levels. 

FSLW and PSLW are computed in 5-degree temperature bins for 28 cloud types defined by the 

model CTT and CWP and stored in lookup tables. Results for the other four CTT bins which 

range from -40°C to 0°C in increments of 10°C are not shown but exhibit similar behavior over 

shallower depths. As shown in Figure 35, the model analyses indicate that the probability for 

SLW increases with increasing temperature and increasing CWP. This is generally consistent 

with basic cloud physics concepts and relationships to atmospheric temperature and dynamic air 

motions. For example, upward vertical velocities found in developing clouds contribute to a 

greater production of liquid water and larger values of CWP, whereas downward air velocity is 

more likely associated with lower values of CWP and decreasing amounts of liquid in dissipating 

SLIOW clouds. In the S-FITv2.0 algorithm, PCLD(z) and PSLW(z) are estimated for each 

cloudy pixel by linearly interpolating the appropriate values retrieved from the lookup tables that 

correspond to the cloud type defined by the retrieved cloud properties, and by using a 

temperature profile obtained from a model analysis or short-range forecast valid at the time and 

location of the satellite data.  In the LaRC NRT system these are usually acquired from the 

operational RAP obtained from NCEP over the GOES domain.  The probability for icing as a 

function of altitude below ice-phase topped clouds is computed from PCLD(z) and PSLW(z) as 

PICING(z) = PSLW (z)∗PCLD(z) .    (18) 

The relationship between the mean FSLW (Figure 35b), temperature, and CWP is more complex 

than that found for PSLW.  Generally, the mean FSLW decreases with increasing values of CWP 

and there is a pronounced maxima that varies from about -15°C to -30°C as the CWP increases.  

The mean SLWC values corresponding to FSLW (not shown) indicate that while FSLW 
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decreases with increasing CWP, higher values of SLWC are associated with larger CWP values 

as expected.  

Now that a strategy has been developed to estimate the vertical profiles of the probability for 

icing and the SLWC embedded within SLIOW clouds in a manner that is constrained by NRT 

satellite cloud retrievals, the next step is to map that information to the FIT in a way that is most 

useful to the aviation weather community. Until further guidance can be obtained from that 

community, the strategy employed here is to provide a product that is consistent with the 

SFITv1.0 output, and therefore includes estimates of the upper and lower altitude boundaries for 

the icing layer, and the maximum likely intensity for the icing layer embedded within SLIOW 

clouds. In order to estimate the icing intensity, it is assumed that the meteorological parameter 

with the greatest potential impact on intensity is the SLWC. Guidance derived from an airfoil 

modeling study (Politovitch, 2003) is used to map the SLWC values in the derived vertical 

profile to icing intensity. One adjustment to this table was made for application to the satellite 

algorithm. Since the light-moderate intensity index (value of 4) is grouped into the MOG side of 

two-category satellite intensity index, the SLWC range for this category was split so that values 

less than 0.093 are considered ‘light’ while larger values are considered ‘MOG’. That mapping is 

shown in Table 5 and indicates the degree to which the potential icing intensity is expected to 

increase with increasing SLWC.  The expected upper and lower altitude boundaries for the icing 

layer are determined from the icing probability profile, the derived CBH and knowledge of the 

freezing level.  For SLIOW clouds, the icing base altitude is determined to be either the derived 

CBH or the freezing level whichever is higher.  The icing top altitude is set to the level found for 

pre-determined PICING thresholds that best capture the icing layers reported by pilots. The 

thresholds, which were found to vary from 5% to 30% with increasing CTT and COD, were 
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empirically derived by matching the satellite-based PICING profiles with the altitude 

information contained in icing PIREPS over a 3-month period.  Thus, the icing top altitude 

estimates for SLIOW clouds varies over a wide range of atmospheric conditions as a function of 

the satellite-derived cloud properties, and is tuned to icing PIREPS. 

To better illustrate the SFITv2.0 process for SLIOW clouds, the method is demonstrated for 

two hypothetical clouds (cloud1 and cloud2) with VISST cloud properties similar to those found 

near Davenport, Iowa at 1745 UTC on 26 Feb 2013 as seen in Figure 31.  The CTH was assumed 

to be the same for both clouds (10.8 km) and the COD was set to 50 (100) for cloud1 (cloud2), 

respectively. The IWP was computed from the COD by assuming a CER value of 50 for both 

clouds. H is determined from the CET, COD and IWP as in Minnis et al. (2010) and subtracted 

from the CTH in order to estimate the CBH. The TWP is estimated from the COD and IWP with 

equations 11 and 12.  The CTH, CBH, and TWP are then used to constrain the various 

climatological VDF’s in order to derive vertical profiles of PCLD and PSLW (Figure 36a), TWC  

(Figure 36b), SLWC (Figure 36c) and icing intensity (Figure 36d) for cloud1 and cloud 2. The 

icing altitude boundaries, maximum probabilities and intensities, and other bulk cloud properties 

are tabulated for cloud1 and cloud2 in Table 6. In these examples, the temperature profile 

obtained from the 12 UTC Davenport radiosonde launch was used to identify the freezing level 

and for converting between temperature and height. While the results shown here may not 

capture the more complex vertical structures associated with SLW and icing conditions in 

SLIOW clouds, they appear to be quite reasonable. For example, higher values of SLWC, icing 

probability and intensity are found for the optically thicker cloud2 when compared to the values 

found for cloud1. Finally, the key elements and decisions for the SFITv2.0 algorithm are 

summarized in a high-level flowchart shown in Figure 37. 
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In the next section, the SFITv2.0 is applied to GOES data and demonstrated with a series of 

case studies.  The results of an initial statistical analysis conducted to validate the SLIOW FIT 

estimates are also presented. 

 

6.3  SFITv2.0 Examples and Initial Verification 

An example of the SFITv2.0 product is shown in Figure 38 and corresponds to the same time 

period analyzed with the SFITv1.0 output that is shown in Figure 33. Unlike the SFITv1.0 

estimates shown in Figure 33, the SFITv2.0 provides a solution for all cloud conditions, 

including areas with overlapping high ice clouds.  In this case, the significant icing conditions 

captured in the g-airmet warnings issued by the AWC and also reported by pilots within the large 

area of SLIOW clouds, appear to be adequately captured in the satellite analyses. In addition, the 

satellite analyses provide improved spatial and temporal resolution of icing conditions relative to 

the conventional observations and model based forecasts. Note also the additional intensity 

category for heavy icing, which is denoted by the magenta pixels in the satellite icing analyses.  

The most significant area of heavy icing found for this case appears to be associated with the 

large water droplets retrieved in the SLW clouds over the Appalachians (see Figure 31e). Heavy 

icing was also identified with the SFITv2.0 algorithm in an area to the east of North Carolina 

over the Gulf Stream (Figure 39).  These were triggered by high values of 6.7-11 µm BTD found 

in very opaque, deep, cold, optically thick clouds which are typically associated with convection 

and significant upward vertical velocities. These clouds are assumed to contain heavy icing 

conditions in the SFITv2.0 algorithm, although pilots are often able to avoid these using weather 

radar guidance, so encounters with icing in these cloud types are more rare. 
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To determine how well the SFITv2.0 is able to resolve icing conditions, the satellite 

estimates are matched and compared with icing PIREPS in a statistical manner similar to that 

described by Smith et al. (2012). The FIT derived from GOES-13 was compared to icing 

PIREPS over the eastern CONUS between January 1 and March 31, 2013.  All satellite pixels 

within 20 km and 15 minutes of each icing PIREP were matched under the condition that the 20-

km radius region was completely overcast. Regions containing any icing are considered to be 

positive detections from GOES. This strategy resulted in 11,851 matches during the daytime, of 

which 5,759 (2,713) of the matches were completely overcast liquid (ice) topped cloud regions, 

respectively. Two-by-two contingency tables are constructed to help quantify the 

intercomparisons with standard skill scores. The skill in detecting icing conditions is shown in 

Table 7.  The probability of detecting icing (PODY) is 99% for all clouds, 99% for liquid clouds 

and 98% for ice clouds.  The accuracies (percentage of correct detections) are 88%, 90% and 

83% for all clouds, liquid clouds and ice clouds, respectively. False detections are common, but 

comprise only a small percentage of the total (false alarm rate, FAR~10%). Adequately 

quantifying false alarms using icing PIREPS appears to be impossible due to the low bias in ‘no 

icing’ observations (Brown and Young, 2000). The probability of detecting ‘no icing’ conditions 

(PODN) is also highly uncertain and misleading for the same reason. The high values of PODY 

and accuracy found for the daytime data indicate that the satellite technique has an excellent 

detection capability relative to positive icing PIREPS, even for overlapping clouds. These results 

are considerably better than those found by Ellrod and Bailey (2007) and by Smith et al. (2012) 

since those algorithms only applied to SLW clouds. 

Statistics were computed from contingency tables that were formed to test the two-category 

intensity component of the FIT algorithm during daytime. The results are shown in Table 8 for 
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overcast SLW regions (N=5,711) and for overcast ice cloud regions (N=2,236).  As in Smith et 

al. (2012), the PIREPS light-moderate reports (categorical index=4) were conservatively 

classified as MOG icing for matching with the two-category satellite icing intensity index. In 

other words, PIREPS icing intensity indices 1-3 are considered ‘light’, while indices with values 

greater than 3 are considered ‘MOG’.  Since there are only two intensity categories in the 

satellite technique, the SLWC range for ‘light-moderate’ found in Politovitch (2003) was 

redistributed so that the lower half of that range (SLWC=0.066-0.093) are considered to be 

‘light’ and the upper half is considered to be ‘MOG’. Two sets of statistics are shown in Table 8. 

Table 8a lists the results found by comparing the dominant icing intensity retrieved from GOES-

13 in the 25 km radius area surrounding each PIREP. The accuracy of the satellite method for 

separating light from MOG icing conditions as reported by pilots is 60% and 57% for liquid and 

ice clouds, respectively. PODL and PODM are found to be 60% and 61% for liquid clouds.  

These results are similar to those found by Smith et al. (2012) for the SFITV1.0, which was 

tuned to produce similar values of PODL and PODM.  The SLIOW algorithm is not tuned since 

it relies on a physical retrieval of SLWC that is subsequently is mapped to icing intensity.  For 

ice clouds, PODL and PODM are found to be 61% and 45%, respectively.  There is some 

ambiguity in these comparisons since at times the 25 km radius area assessed from satellite 

contains significant amounts of both intensities.  To try and account for this more fairly, the 

contingency tables were formed again, but in this case, satellite regions covered with at least 

30% of both ‘light’ and ‘MOG’ icing conditions were counted as hits in both categories.  The 

performance statistics are somewhat better and are shown in Table 8b.  In these cases, the 

intensity accuracies are 73% (72%), PODL is 76% (66%), and PODM is 80% (47%) for liquid 

(ice) clouds, respectively. While these comparisons indicate somewhat modest skill for 
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differentiating light from MOG icing conditions from satellite, the uncertainties associated with 

icing PIREPS and in the verification methods may mask the true utility of the method.  For 

example, PIREPS are known to suffer from temporal and spatial reporting errors.  When 

superimposed on the high natural variability of icing conditions often encountered in clouds, and 

the high spatial variability found in the satellite cloud property retrievals, sampling mismatches 

with PIREPS probably confound the comparisons. Smith et al. (2012) found higher accuracies 

when applying filters to help minimize the impact of sampling issues, and also found higher 

accuracies when comparing to ground-based icing remote sensing datasets, which are accurately 

time stamped and geo-located. Other complicating characteristics with respect to interpreting 

PIREPS include the fact that icing intensity reports are subjective, depending on the experience 

of the pilots. In addition, the severity to the airframe depends not only on the meteorological 

conditions, but also on flight and airframe characteristics, which are currently impossible to 

account for. Despite all of these potential issues, the comparisons shown here appear to be 

reasonably good. Another test for the veracity of the satellite method is to determine whether it 

produces the same relative frequency of light and MOG icing conditions as observed and 

reported by pilots. Those values are shown in the far right columns of Table 8. In fact, this test 

may be a better accuracy gauge than the relative values found for PODL and PODM. The fact 

that the frequency of ‘light’ icing PIREPS are typically found to be 2.5 to 3 times greater than 

the frequency of ‘MOG’ icing PIREPS may in fact yield misleading values of PODL and 

PODM, when considering the sampling errors that likely exist.  It is interesting to note from the 

results in Table 8 that for the case of SLW clouds, the satellite method overestimates the 

frequency of MOG icing by 10-20%, despite the fact that the SLW algorithm was tuned to 

maximize the agreement in PODL and PODM.   On the other hand, the ice cloud algorithm was 
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not tuned in this way.  While the values of PODL found for ice clouds are much higher than the 

values found for PODM, the level of agreement with PIREPS found for the frequency of MOG 

icing conditions is better than the level of agreement found for SLW clouds.  Thus, it appears 

that any algorithm tuning designed to maximize the values of both PODL and PODM, may lead 

to overestimates in the frequency of occurrence of MOG icing. Some future work is probably 

needed to reassess the low cloud SLW algorithm with respect to these issues.  For ice clouds, the 

SFITv2.0 algorithm appears to be producing results that overall have accuracies that are 

comparable to those found for SLW clouds. While the values found for PODM are low, the 

algorithm does seem to produce the right amount of MOG icing embedded beneath ice topped 

clouds, relative to the frequencies reported by pilots.  

In Figure 40, the icing top altitudes derived from GOES-13 data using the SFITv2.0 

algorithm are shown. Pilots typically report the altitude that the icing was encountered rather 

than a top and base altitude, so validating the satellite icing layer boundaries is currently 

impossible. Nevertheless, an assessment is made as to how well the satellite estimates capture the 

altitudes reported by pilots.  For the case on 26 February 2013 that is shown in Figure 40, the 

PIREPS altitudes are plotted on top of the satellite analysis and good correspondence is found in 

general.  Figure 41 summarizes the altitude comparison found for the 3-month period analyzed 

from January-March, 2013. The frequency distribution of the distance from the PIREPS icing 

altitudes to the icing altitude boundaries derived from GOES with the SFITv2.0 algorithm is 

plotted here. The frequencies indicated for the distance value of zero indicate the percentage of 

the time that the satellite icing layers captured the PIREP altitudes. Negative (positive) distance 

values indicate that the PIREPS altitudes were found below (above) the satellite icing base (top) 

altitude estimates, respectively. The results indicate that for both ice and liquid topped clouds, 
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the satellite analyses capture the PIREPS altitudes about 65% of the time.  Furthermore, the 

satellite-derived icing boundaries are within about 1000 feet of the reported altitudes over 90% 

of the time. The fact that this level of agreement is found is perhaps more remarkable for the ice 

clouds since they span much greater vertical depths than the shallower low-level SLW clouds. 

Several case studies are conducted with the SFITv2.0 output to examine the icing conditions 

as determined from satellite at the time of several serious icing-related aviation incidents. The 

first case occurred on 20 December 2011. A single engine turboprop crashed near Morristown, 

New Jersey, narrowly missing a crowded Interstate highway, after departing nearby Tetersboro 

airport. All five passengers were killed.  Numerous encounters of severe icing were reported near 

the time and location of the crash at altitudes near 17 kft that had commercial air traffic in and 

out of New York City airports scrambling to acquire altitude clearances to exit and avoid the 

dangerous conditions. The satellite cloud top phase analysis using GOES data taken at the time 

of the incident indicated that a large area of SLW clouds covered the region from Pennsylvania, 

across New Jersey, and extended eastward over the Atlantic Ocean.  The icing analysis shown in 

Figure 42a indicates that while a wide range of icing conditions were present, the possibility for 

severe icing was significant across New Jersey, particularly in a wide area just south and west of 

the crash site.  Large water droplets inferred from the GOES 3.9 µm channel (Figure 42b) 

triggered the severe condition in the SFITv2.0 algorithm.  The severe condition was not detected 

from GOES along the route of the ill-fated turboprop.  The 12 UTC radiosonde profile from 

Upton, New York may have sufficiently captured the meteorological conditions, although these 

data were taken several hours earlier and in an area downstream of the crash site. Nevertheless, 

the sounding shown in Figure 43a indicates that the conditions were ripe for SLD (super-cooled 

large droplets) due to the saturated air column above a significant capping inversion that 
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occurred at about 800 hPa. The capping inversion has the potential to impact icing conditions 

aloft by confining pollution to lower levels beneath the cloud.  Cleaner clouds contain fewer 

cloud condensation nuclei and tend to produce larger water droplets since there is less 

competition for the available water vapor. The sounding also indicates that a second thinner 

cloud level may have obscured the satellite view to the more dangerous icing conditions below 

that were encountered by the aircraft before it crashed. An overlapping cloud with smaller water 

droplets could explain why smaller values of CER were retrieved, which subsequently led to a 

lower flight icing threat estimate in this area. The NEXRAD imagery from nearby Binghamton, 

New York shown in Figure 43b indicates that the clouds across northern New Jersey were 

producing low values of radar reflectivity, which are usually suggestive of large drizzle size 

water droplets or ice crystals.  The radar echoes appear to occur in areas that the larger values of 

CER are found but also occur over the crash site area. Considering the severity of the icing 

conditions that were reported in the area, these clouds probably did contain SLD. While it is 

disappointing that this condition was not detected from satellite in the area of the plane crash, it 

may be possible to better diagnose these types of conditions in the future by combining 

information from satellite and radar data. More advanced satellite sensors, such as the MODIS, 

have additional spectral channels that provide some information on the vertical profile of CER 

(e.g., Platnick (2000), Chang and Li (2002)), but these data are difficult to evaluate with respect 

to icing conditions since they are only available over a given area a few times per day, and thus 

they rarely correspond with the more significant known icing events such as this. In the near 

future, the 16-channel ABI planned for the next generation GOES-R satellite will provide the 

high frequency multi-spectral observations needed to further improve icing diagnoses. 
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Another interesting severe icing case occurred on 22 February 2013. On this day, a wide 

area of SLW blanketed the upper Midwest. The satellite icing analysis at 20 UTC shown in 

Figure 44a indicated that a wide are of MOG icing conditions could be expected across much of 

southern Wisconsin, northern Illinois and Indiana and most of Michigan.  An area of potentially 

severe icing was also identified over Lake Michigan. As in the previous case, large CER 

retrievals triggered the severe condition determined with the SFITv2.0 algorithm. Near the same 

time, two severe icing PIREPS were filed, one over northern Illinois and one over Lake 

Michigan. No signal in the satellite data was found to discern the severe condition over Illinois, 

but the severe icing PIREP corroborates the severe condition found over the lake in the satellite 

analysis. The severe condition identified from satellite persisted throughout the afternoon and 

early evening and pushed eastward into southeastern Michigan.  It was not until 2355 UTC after 

several more severe icing PIREPS had been filed, that the AWC issued the icing SIGMET 

(severe icing warning) over the area shown in Figure 44b. Clearly, in this case, the severe icing 

threat was accurately diagnosed many hours earlier in the satellite analyses, which could have 

been useful to AWC forecasters and aviators had the information been made available to them. 

On 5 September 2012, a commercial Bombadier DHC-8-103 aircraft with 15 people on 

board experienced a 5 kft altitude loss due to icing conditions encountered shortly after takeoff 

from Anchorage while on its planned route to Homer, Alaska (Figure 45a). The corresponding 

GOES-15 cloud top phase analysis (not shown) indicated that SLW clouds were present along 

the route.  The satellite icing analysis shown in Figure 45b appears to have correctly diagnosed 

the severe conditions over the same area of the Alaska Kenai peninsula where the aircraft lost 

altitude. In this case, the aircraft was able to maintain flight and return safely to Anchorage. This 
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case is of particular interest to the NWS Alaska Aviation Weather Unit (AAWU) since the 

dangerous conditions that occurred on this day were not forecasted.  

 

7 Summary and Discussion 

This research is motivated by the realization that despite the considerable amount of work 

and resources spent to develop and improve cloud observing systems, quantitative real-time 

retrievals of cloud properties, particularly those with high spatial and temporal resolution from 

passive geostationary satellite imagers, remain underutilized in weather applications and decision 

support systems (DSS). In this study, new techniques are developed for interpreting cloud 

products derived from satellite imager data in order to (1) better account for uncertainties and 

improve their absolute accuracies, (2) improve the definition of cloud vertical structure, and (3) 

demonstrate NRT weather applications for their use. The methods are developed using datasets 

taken over the CONUS and adjacent ocean areas with the majority of the data taken over land 

areas. No attempt has yet been made to stratify the techniques for separate application over land 

and ocean.  Thus the current profiling method, and particularly the icing technique which is 

tuned to icing PIREPS over the CONUS, are most applicable to mid–latitude land areas. 

A significant outcome of this study is the development of a method to derive 4-D cloud 

properties that improves the resolution of cloud vertical structure, including the potential mass 

partitioning of cloud liquid and ice in deep ice cloud over water cloud systems, which are 

generally poorly observed in their entirety. This study demonstrates that while these clouds are 

relatively rare (see Figure 11), they are important because of their association with large synoptic 

scale storm systems, convection, precipitation and adverse weather conditions, including 

dangerous icing conditions, and because they comprise a significant fraction of the total cloud 
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water budget found over large areas of the Earth (see Figure 12). Therefore, accurate 

characterizations of these types of clouds are important for both weather and climate applications 

and studies. Since no single observing system provides the comprehensive information needed to 

solve this complex problem alone, a synergistic approach is taken that combines information 

from multiple sources including satellite and ground-based active sensor data, cloud model 

output, passive satellite imager data, and aircraft observations. Verification studies indicate that 

the cloud profiling technique produces reasonably good estimates of upper tropospheric IWC 

compared to active sensor retrievals when the technique is applied to CERES MODIS cloud property 

retrievals.  For cirrus clouds, the satellite imager and active sensor retrievals of IWC and IWP agree 

on average to within 30%. The effect of the MODIS cloud boundary errors on the differences was 

examined by constraining the MODIS profiles with the CloudSat cloud boundaries. In those cases, 

the mean cirrus IWC values derived from MODIS are found to agree to with CloudSat retrievals to 

within 10%. For optically thick clouds, the mean IWC and IWP retrievals are found to agree to a 

level of 10% over a wide range of COD values. 

When applied to high frequency cloud products derived from GOES data, the profiling method 

also produces cloud LWC estimates beneath overlapping ice clouds that correspond well with pilot 

reports of icing intensity. Taken together, an unprecedented level of closure is obtained for 

characterizing the cloud water budget in SLIOW cloud systems using NRT satellite observations. 

This level of closure is only possible by developing and employing empirical methods to help 

account for systematic errors found in the retrieval of CWP due to the simplifying assumptions 

regarding cloud phase and vertical homogeneity that are common in passive satellite retrieval 

methods. Thus, an additional outcome of this research is more accurate CWP retrievals from 

satellite imager data.   
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Two different methods are developed in this study for estimating the potential LWP 

embedded in SLIOW clouds. The first method is developed based on comparisons of the GOES-

derived COD with MWR data taken from the ARM SGP site, which are included in the ARM 

MICROBASE dataset. These data were used to develop parameterizations to estimate the TWP 

in SLIOW clouds from the satellite imager cloud products.   The second method is employed in 

the profiling technique, which incorporates the TWP parameterization but also uses information 

derived from the cloud analysis scheme in the RUC model to partition the liquid and ice mass 

fractions from the total mass. A comparison of the LWP derived from the two methods reveals 

surprisingly good agreement on average over a wide range of cloud optical thicknesses (COD). 

The absolute values derived from the MICROBASE parameterization (Equation 12) are about 

10-20% higher for clouds with COD values less than about 20 and about 10-20% higher for 

clouds with COD values greater than about 110.  However, for COD values between 20 and 100, 

the LWP values are remarkably consistent between the two methods, which indicates in a rather 

indirect way that the partitioning of liquid and ice in the model cloud analyses is quite consistent 

with the ARM observations.  Figure 46 shows the comparison of the two SLIOW cloud LWP 

retrieval estimates expressed as the ratio (in percent) of the LWP difference to the TWP, which is 

binned and plotted as a function of the COD retrieved from the GOES-13 imager. With respect 

to the TWP estimated for these clouds, the level of agreement is found to be within a few 

percent. This is a rather unique and unexpected outcome that supports the idea and approach 

developed as part of this thesis to integrate information from multiple observing systems along 

with information captured in cloud models to more accurately determine the geographic and 

vertical distribution of cloud water. Since the profiling method developed here, which 

incorporates climatological information on cloud vertical structure and water phase derived from 
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models, is found to produce relatively accurate IWC and LWC retrievals when constrained with 

satellite imager data, this study also demonstrates that for these types of clouds, the models do in 

fact have notable skill in characterizing the vertical distribution of cloud water. The most basic 

problem that remains with models is that they do not diagnose clouds at the right time and in the 

right place except on very large scales.   

With respect to NWP and its utility in DSS, the need to improve cloud diagnoses and 

forecasts is well recognized, but many challenges exist. A significant deficiency in models is that 

clouds and their key characteristics are poorly initialized. Thus, it seems unlikely that 

improvements in model resolution and physics, which garner a lopsided amount of attention and 

resources in weather programs, will have much impact until this most fundamental initialization 

problem is more adequately addressed with observations, particularly with respect to SLIOW 

clouds. The results of this research suggest that a potential avenue for future research is to 

develop methods to improve cloud initializations in models that better incorporate satellite-

derived cloud properties, such as the 4-D cloud profiles developed in this study. 

Applications are also developed here to infer the flight icing threat to aircraft from the NRT 

cloud properties and profiles that are now routinely derived from geostationary satellite imager 

data.  These methods are found to significantly improve the early warning and resolution of icing 

conditions that are often not adequately captured in current forecasting techniques. Compared to 

PIREPS and ground-based icing remote sensing datasets, the satellite icing detection and 

intensity accuracies are approximately 90% and 70%, respectively. The satellite-derived icing 

boundaries capture the reported altitudes over 90% of the time. 

These results demonstrate improved accuracies and new utilities for operational satellite-

derived cloud products; however, more work is needed to further validate and improve the 
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methods.  For example, there are several other active sensor based IWC datasets available for 

verification other than the datasets employed here. These include the CloudSat 2CICE product 

and the ICARE (Cloud-Aerosol-Water-Radiation Interactions) DARDAR datasets. 2CICE and 

DARDAR employ optimal estimation techniques that combine the CPR and CALIOP data in 

IWC retrieval schemes.  While the upper level IWC and IWP retrievals derived from the passive 

sensor profiling method agree well with CloudSat in the initial comparisons presented here, 

further improvements may be realized through comparison with additional observations. In 

addition, the climatological approach and the verification studies presented here were only 

developed and performed over the CONUS. The method could be expanded for global 

application and additional studies should be conducted to determine how well these new passive 

satellite retrievals capture the global distribution of cloud ice and liquid water.  

With respect to the icing algorithms contained in the SFITv2.0, more work is needed to 

ready these datasets for operational use.  A significant issue in icing verification studies is the 

inherent difficulty associated with validating false alarms since ‘no icing’ PIREPS are relatively 

rare.  Some false alarms are already known but these occur relatively infrequently and it should 

be possible to reduce these with additional work.  For example, CER has proven to be a 

potentially effective retrieval parameter for diagnosing severe icing conditions but CER 

overestimates are known to occur in close proximity to ice clouds and along cloud edges.  New 

methods are needed to properly screen these contaminated retrievals to eliminate ‘severe’ icing 

false alarms.  Another significant potential source of error is associated with our inability to 

properly account for the bright background in some cloud retrievals over snow. The development 

of more accurate cloud property retrievals over snow surfaces is underway. These could be 

applicable to GOES-R data but have not yet been tested in satellite icing applications. 
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Ultimately, the end users, including aviation weather forecasters and pilots, should provide the 

best test for the utility of the satellite icing products. Plans are being developed to deliver these 

exciting new products to the GOES-R Proving Ground in the near future so that they can be 

evaluated in operational applications. 
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Figures 

 
 

 
 

Figure 1. Illustration depicting the geographic domain for the RUC and Rapid Refresh numerical 
modeling systems at NOAA GSD and NCEP (courtesy of Stan Benjamin, NOAA ESRL/GSD). 
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Figure 2. Satellite and NWP cloud top height comparison on 12 November 2012. (a) The 1745 
UTC GOES RGB image (derived from the VIS, IR and SIR channels, (b) the corresponding 
cloud top height (km) analysis derived in the NASA LaRC operational cloud retrieval system 
using data taken from GOES-E and GOES-W, the 1800 UTC cloud top height analysis from the 
(c) GSD RAP, and (d) the NCEP RAP. Overall, cloud top height is well characterized in the 
model analyses. Some problem areas are noted with the white circles and described in the text. 
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Figure 3. Cloud amount comparison between GOES (1745 UTC) and the model cloud 
analyses and forecasts (valid time at 18 UTC) from the (a) GSD and (b) NCEP RAP for low 
(0-3 km), middle (3-7 km), and high (> 7 km) clouds as defined by the cloud top height, and 
for the period 12-18 Nov 2012.  The satellite data are used to clear clouds in the model 
analysis procedure but the impact of the satellite assimilation is only temporary as these results 
indicate that the cloud clearing procedure loses retention (for high clouds) as the forecast 
period increases. 
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Figure 4. Frequency (%) of GSD RAP cloud free grid boxes corresponding with GOES clear 
areas as a function of forecast hour (valid time 18 UTC) over the period 12-18 Nov 2012. The 
level of agreement decreases with increasing forecast hour and is regionally dependent 
indicating problems with the forecast models ability to retain the satellite cloud information 
that is assimilated into the model analysis. 
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Figure 5. Cloud water path (gm-2) derived from (a) GOES, (b) RUC and (c) their difference at 
2000 UTC on 6 May 2008. The results indicate that while the two analyses appear to agree quite 
well overall at large scales, the instantaneous differences at smaller scale are quite large. The 
GOES comparisons with the RAP-GSD shown in (d) and with the RAP-NCEP shown in (e) 
valid at 1800 UTC on 20 November 2012 indicates that the relative differences between satellite 
retrievals and the model analyses have remained similar over time and in different 
implementations of the model. 
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Figure 6. Cloud water path ratio for (a) all, (b) low, (c) mid, and (d) high level, coincident 
clouds observed from GOES and derived in the GSD RAP cloud analysis for the period 12-18 
November 2012 and over the entire domain shown in Figure 5d. The results indicate that there 
is very little correlation between the cloud water path found in the model and the satellite 
retrievals at the gridbox level, and that the instantaneous differences can be very large. 
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Figure 7. The mean (a), and standard deviation (b) of the ratio of the CWP derived from the 
model analyses and from satellite observations (computed as GSD RAP/GOES) as a function of 
the resolution of the averaging region. The results indicate that the model output does not agree 
well with observations at smaller spatial scales and must be averaged over scales of 100-300 km 
before it captures the natural variability in the CWP as observed from GOES. 
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Figure 8. Cloud analyses along the CloudSat/CALIPSO orbit track over the eastern Dakotas 
(see figs. 5a-5c) near 20 UTC on May 6, 2008 depicting the (a) CPR reflectivity (dbZ),  (b) 
cloud boundaries derived by combining the CPR and CALIOP signals, total CWC (g/m3) 
profiles derived from the CPR in the CloudSat (c) CWC-RVOD product and the (d) CWC-RO 
product, (e) the total CWC (g/m3) profiles derived in the RUC 0-hr forecast, and (f) the CWP 
derived from the RUC, GOES-12 and the CWC-RVOD product. 
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Figure 9. The monthly mean cloud fraction during April, 2013 for (a) clouds with liquid tops, 
and (b) clouds with ice phase tops, derived from the CERES MODIS Edition 4 cloud algorithm. 
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 Figure 10. The monthly mean cloud water path during April, 2013 for (a) clouds with liquid 

tops, and (b) clouds with ice phase tops, derived from the CERES MODIS Edition 4 cloud 
algorithm. 
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 Figure 11. The fraction of all clouds during April, 2013 with (a) COD > 50 and (b) COD=150 

(saturated) derived from the CERES MODIS Edition 4 cloud algorithm indicating that optically 
thick clouds are relatively rare. 
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Figure 12. The relative contribution (%) of the cloud water path for optically thick clouds to the 
total mean CWP for (a) clouds with COD > 50, and (b) clouds with COD =150 (saturated 
clouds). Despite the fact that these clouds are relatively rare (as seen in Figure 11) their 
contribution to the total mean cloud water path is significant over large areas of the tropics and 
mid-latitudes, highlighting their importance in both weather and climate. These results were 
derived from the April 2013 CERES MODIS Edition 4 cloud properties. 
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Figure 13. Bin-averaged relationship between the GOES VISST IWP and the MICROBASE 
TWP (squares) and MICROBASE IWP (circles) at the ARM SGP site over a 5-year study 
period. The solid and dashed lines are the power law best fits to the MICROBASE TWP and 
IWP data, respectively. The one-to-one line is also shown (dashed-grey). 
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Figure 14.  Bin-averaged relationship between the GOES VISST COD and the LWP derived 
from the microwave radiometer at the ARM SGP site over the 5-year study period (solid black 
line) and extrapolated from  Minnis et al. (2007) using a linear (blue line) and a power law 
(black dashed line) fit. 
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 Figure 15. Example of the parameterized TWP computed for a full range of imager IWP 

retrievals assuming an ice cloud effective radius of 55 µm and using the relationships depicted 
with the black solid lines shown in Figures 13 and 14. The TWP estimated using the 
parameterization described in the text is nearly a factor of two larger than the retrieved IWP at 
the high end. 
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Figure 16 The monthly mean LWP and IWP during April, 2013 derived from the CERES 
MODIS Edition 4 cloud retrievals and by applying the optically thick cloud overlap 
parameterizations. 
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Figure 17. The difference in the monthly mean LWP and IWP during April, 2013 derived from 
the CERES MODIS Edition 4 cloud retrievals after applying the optically thick ice over water 
cloud overlap parameterizations vs. the standard retrieval assuming no overlap. 
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Figure 18. A 5-year (2002-2007) all sky LWP climatology constructed from Special Sensor 
Microwave/Imager (SSM/I) retrievals over ocean. Adapted from Li et al. (2008).  These results 
help to corroborate the liquid portion of the TWP parameterization developed in this study for 
ice over water cloud systems that are applied to MODIS and GOES imager data. 
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Figure 19. Mean normalized IWC profiles, S(z*), depicting the typical vertical distribution of 
IWC from cloud top (z*=1) to cloud base  (z*=0) derived from the CloudSat 2C-ICE product 
for single-layer cirrus clouds during Jan-March, 2007 and from 20-55°N and 65-150°W. 
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 Figure 20. Same as Figure 19 but showing the standard deviation in S(z*) expressed as the 

percentage of the mean. The relative uncertainty shown here is due to a combination of the 
natural variability found in cirrus cloud vertical profiles as well as retrieval uncertainties. 
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Figure 21. Same as Figure 19 for cirrus clouds but constructed with the CloudSat CWC-RVOD 
product. 
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 Figure 22. Normalized CWC profiles, S(z*), derived from the CloudSat CWC-RVOD product 
for all single-layer clouds during Jan-March, 2007 and from 20-55°N and 65-150°W. 
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 Figure 23. Normalized hybrid CWC profiles, S(z*), derived from the RUC model and adjusted 
to better match CloudSat/CALIPSO IWC at temperatures below -20°C.  The RUC data are from 
the 18 UTC cloud model analyses during Jan-March, 2010 from 20-55°N and 65-150°W. The 
CloudSat/CALIPSO adjustments were made using C3M data taken over the same area in April 
2010. 
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 Figure 24. Cirrus IWC frequencies and average profiles derived from MODIS (red line) using 

the 2C-ICE climatology of S(z*) and from CALIPSO CPro + CloudSat RO retrievals (black line) 
using data taken over the CONUS in April 2010.  The results are stratified into 5 COD bins and 
duplicated in the left and right panels. The images depict the IWC relative frequencies, which 
were normalized to the maximum number of occurrences, and are shown for the MODIS 
retrievals in the left panels and for the CloudSat+CALIPSO retrievals in the right panels. 
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Figure 25. Same as Figure 24 but using the CWC-RVOD climatology of S(z*) to derive the 
MODIS profiles. 
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Figure 26. Same as Figure 25 but for MODIS derived profiles constrained with the 
CloudSat cloud boundaries rather than the MODIS derived cloud boundaries and 
compared to the CloudSat CWC-RO IWC profiles. 
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Figure 27. IWC profiles for cloud levels above the -20°C altitude level for optically thick clouds 
derived from MODIS (red line) using the hybrid climatology of S(z*) and from CALIPSO CPro 
+ CloudSat RVOD retrievals (black line) using data taken over the CONUS in April 2010.  
Mean values of the IWC and the IWP computed above the -20°C altitude level (IWP253 in the 
text) are also shown. The results are stratified into 5 MODIS COD bins and duplicated in the left 
and right panels. The images depict the IWC relative frequencies, which were normalized to the 
maximum number of occurrences, and are shown for the MODIS retrievals in the left panels and 
for the CloudSat+CALIPSO retrievals in the right panels. 
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Figure 28. Same as Figure 27 but for profiles binned in different ranges of COD 



 

 

121 

 

Figure 29. (a) IWC retrieval comparison between GOES-13 and the 2D-S probe deployed from 
the NASA DC-8 aircraft on 13 September 2013 during SEAC4RS and (b) corresponding flight 
track with altitude trace. 
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Figure 30. (a) WC retrieval comparison between GOES-13 and the 2D-S probe deployed from 
the NASA DC-8 aircraft on 21 September 2013 during SEAC4RS and (b) corresponding flight 
track with altitude trace. 
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Figure 31. Select cloud parameters derived in the NASA LaRC operational cloud retrieval 
system using data taken from GOES-E and GOES-W at 1745 UTC, 26 February 2013:  (a) 
cloud top phase, (b) effective temperature [K], (c) optical depth, (d) cloud thickness [km], (e) 
effective droplet size [µm] for liquid clouds, and (f) liquid water path [g m-2]. 
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Figure 32. Flight icing threat derived from GOES-E data on 26 Feb 2013 using the SFITv1 
algorithm for low clouds described in Smith et al. (2012). 
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Figure 33. The flight icing threat derived from GOES data taken at 1415 UTC (a), 1745(b), and 
2015 (c) and that observed and reported by pilots at different times during 26 Feb 2013 (d) - (f).  
Icing advisories issued by AWC shown at 1800 UTC (g) do not capture the low cloud threat 
identified from satellite until 2100 UTC (h) after numerous icing PIREPS were filed. The AWC 
advisories do capture the threat beneath overlapping clouds that the satellite low cloud method 
can not resolve.  
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Figure 34.  The probability for the existence of cloud relative to the single-layer cloud 
boundaries derived from CERES MODIS data during April 2010 for 35 cloud types defined by 
the MODIS cloud effective temperature and cloud optical depth.  Coincident cloud profiles in 
the CloudSat 2B-CLOUDCLASS product are used as ground-truth. 
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Figure 35. The relationship between the SLW probability and mass fraction with temperature for 
clouds with CTT < 233K derived from RUC cloud analyses at 18 UTC during Jan-Mar, 2010. 
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Figure 36. Cloud (solid) and SLW(dashed) probability profiles (a), TWC profiles (b), SLWC 
profiles (c), and icing intensity profiles (d) derived for the two single-layer ice over water clouds 
described in Table 6 with COD=50 (cloud 1) and COD=100 (cloud 2). 
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Figure 37. High level flowchart depicting the key elements and decision tree for the SFITv2.0 
algorithm. 
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Figure 38. Same as Figure 31 but depicting results from the satellite version 2 icing algorithm 
(SFITv2.0) output which correctly captures the icing threat as verified by PIREPS in both low 
cloud and overlapping cloud conditions. 
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Figure 39. (a) The flight icing threat derived from GOES-13 over the southeastern seaboard on 
26 Feb 2013 at 1745 UTC indicating heavy icing potential associated with convection over the 
Gulf Stream and (b) the corresponding 6.7-11 µm BTD image. 
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Figure 40. Icing top altitude image derived from the SFITv2.0 algorithm and the corresponding 
icing altitude reports from pilots (white) near 1745 UTC on 26 February 2013. 
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Figure 41. Frequency distribution of the distance between the PIREPS icing altitude to the icing 
altitude boundary derived from GOES with the SFITv2.0 algorithm. The frequency at the 
distance value of zero indicates how often the satellite icing layer estimates captured the PIREP 
altitudes. The frequency values at the negative (positive) distance values indicate how often the 
PIREPS altitudes were found below (above) the satellite icing base (top) altitude estimates, 
respectively. 
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Figure 42. The (a) flight icing threat and (b) CER (µm) derived from GOES-13 data taken at 
1445 UTC on 20 December 2011 near the time of a fatal plane crash near Morristown, NJ. 
The crash site is indicated by the white symbol ‘Y’ in the top panel. 
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Figure 43. Radiosonde observations of the temperature and humidity profile (a) and weather 
radar observations (b) taken near the time of a severe icing outbreak over eastern Pennsylvania 
and New Jersey on 20 December 2011. 
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Figure 44.  (a) Icing analysis derived from GOES-13 at 2015 UTC on 22 February 2013.  The 
two ‘x’ symbols indicate the location of severe icing PIREPS filed near that time. (b) Map 
depicting the location of a SIGMET issued by AWC at 2355 UTC. 



 

 

137 

 
 

Figure 45. (a) Location that a Bombadier DHC-8 experienced a 5kft altitude loss during an icing 
encounter after takeoff from Anchorage on 5 September 2012 and (b) the corresponding GOES-
15 icing analysis indicating potential severe conditions over the same area of the Alaska Kenai 
peninsula. 
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Figure 46.  GOES LWP comparison for SLIOW clouds estimated in two different ways; (1) 
empirically with a parameterization developed from ARM MWR data co-located with GOES 
VISST COD at the ARM SGP using a 5-year dataset, and (2) from GOES VISST data co-
located with icing PIREPS over a 3-month winter period in 2013 and inferred using the 
profiling technique and climatological guidance from the Thompson microphysics scheme 
embedded in the RUC cloud analysis system. The mean LWP differences between the values 
derived from the parameterization and the values estimated from the profiling technique are 
expressed here as the percentage of the corresponding mean TWP.  While not a direct 
comparison, the relationship shown as a function of the retrieved COD indicates that the cloud 
phase partitioning in the RUC agrees well with MWR observations over a wide range COD. 
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Tables 

 
Table 1a. Cloud frequency (%) derived from GOES data and from the GSD-ESRL RAP over the 
RUC domain shown in Figure 1 and for the period 12-18 November 2012 

 
 
Table 1b. Cloud frequency (%) derived from GOES data and from the NCEP RAP over the 
RUC domain shown in Figure 1 and for the period 12-18 November 2012 

REGION All Low Mid High 
GOES RAP GOES RAP GOES RAP GOES RAP 

ALL 67 63 20 22 21 8 26 33 
LAND 56 52 13 14 21 8 23 30 

OCEAN 75 73 27 28 19 7 30 38 
Pacific 81 81 21 26 19 9 41 46 
Atlantic 73 68 32 30 18 4 24 34 

Gulf of Mex. 71 59 40 33 19 4 12 22 
 

REGION All Low Mid High 
GOES RAP GOES RAP GOES RAP GOES RAP 

ALL 67 60 20 18 21 9 26 33 
LAND 56 52 13 13 21 10 23 30 

OCEAN 75 64 27 20 19 7 30 37 
Pacific 81 72 21 18 19 9 41 45 
Atlantic 73 60 32 23 18 4 24 33 

Gulf of Mex. 71 39 40 17 19 5 12 17 
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Table 2a. CWP derived from GOES data for all clouds and from the GSD-ESRL and NCAR 
RAP over the RUC domain shown in Figure 1 and for the period 12-18 November 2012 

 
Table 2b. Same as 2a but for low clouds with cloud tops below 3 km. 

 
Table 2c. Same as 2a but for mid clouds with cloud tops between 3 and 7 km. 

 
Table 2d. Same as 2a but for high clouds with cloud tops above 7 km. 

REGION CWP (gm-2) CWP (gm-2) 
GOES GSD Bias Ratio GOES NCEP Bias Ratio 

ALL 377 280 -97 1.4 396 318 -78 1.3 
LAND 439 263 -175 1.7 443 333 -110 1.3 

OCEAN 269 295 26 0.9 290 304 14 1.0 
Pacific 196 366 169 .5 204 352 148 0.6 
Atlantic 305 250 -55 1.2 332 254 -78 1.3 

Gulf of Mex. 196 181 -15 1.1 249 197 -52 1.3 
 
 

REGION CWP (gm-2) CWP (gm-2) 
GOES GSD Bias Ratio GOES NCEP Bias Ratio 

ALL 264 95 -169 2.8 307 105 -202 2.9 
LAND 357 87 271 4.1 371 120 -251 3.1 

OCEAN 162 105 -58 1.6 202 95 -107 2.1 
Pacific 127 122 -5 1.0 148 107 -42 1.4 
Atlantic 142 115 -26 1.2 167 83 -85 2.0 

Gulf of Mex. 92 59 -23 1.4 108 98 -10 1.1 
 
 

REGION CWP (gm-2) CWP (gm-2) 
GOES GSD Bias Ratio GOES NCEP Bias Ratio 

ALL 475 204 -271 2.3 472 311 -162 1.5 
LAND 436 141 -296 3.1 441 273 -168 1.6 

OCEAN 450 310 -140 1.5 455 372 -83 1.2 
Pacific 405 350 -55 1.2 424 391 -33 1.1 
Atlantic 259 247 -12 1.1 297 297 -1 1.0 

Gulf of Mex. 229 358 128 0.6 222 359 137 0.6 
 
 

REGION CWP (gm-2) CWP (gm-2) 
GOES GSD Bias Ratio GOES NCEP Bias Ratio 

ALL 465 470 5 1.0 458 484 26 1.0 
LAND 513 418 -95 1.2 507 484 -24 1.1 

OCEAN 345 496 151 0.7 341 461 121 0.7 
Pacific 235 554 319 0.4 229 490 260 0.5 
Atlantic 565 475 -91 1.2 567 469 -98 1.2 

Gulf of Mex. 477 362 -114 1.3 475 245 -230 1.9 
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Table 3a. Mean cirrus cloud IWC (gm-3) during April 2010 derived from CALIPSO and 
CloudSat (CC), CloudSat only (CS), and from CERES MODIS data from 20-55°N and 65-
150°W. The MODIS retrievals were derived with the profiling technique using the 2CICE and 
CWC-RVOD climatologies of S(z*) and constrained with the MODIS IWP and MODIS cloud 
boundaries. The RVOD* column lists the MODIS IWC retrievals when constrained with the 
MODIS IWP and the CloudSat cloud boundaries. 

COD N 
Mean CC-IWC MODIS-IWC CS-IWC MODIS-IWC 
COD C3M 2CICE RVOD C3M RVOD RVOD* 

0-1 2883 0.6 0.005 0.004 0.004 0.006 0.004 0.005 
1-3 7878 1.9 0.008 0.007 0.008 0.010 0.007 0.010 
3-6 934 3.9 0.015 0.011 0.015 0.014 0.011 0.015 

6-10 171 7.3 0.025 0.018 0.025 0.022 0.018 0.023 
0-10 11866 1.8 0.009 0.007 0.009 0.011 0.008 0.010 

 
 
 
Table 3b. Similar to Table 3a but for the mean cirrus cloud IWP (gm-2). 

COD N 
Mean CC-IWP MODIS-IWP CS-IWP MODIS-IWP 
COD C3M 2CICE RVOD C3M RVOD RVOD* 

0-1 2883 0.6 8 6 6 7 6 6 
1-3 7878 1.9 22 21 21 20 21 21 
3-6 934 3.9 58 45 45 39 45 45 

6-10 171 7.3 129 91 91 85 91 91 
0-10 11866 1.8 23 22 22 20 21 21 

 
 
 
Table 3c. Mean cirrus cloud top altitude (km) during April 2010 derived from CALIPSO, 
CloudSat, and from the CERES MODIS Ed4 cloud properties between 20-55°N and 65-150°W. 

COD N 
Mean Cloud Top Height (km) 
COD CALIOP CPR MODIS 

0-1 2883 0.6 10.9 10.1 10.3 
1-3 7878 1.9 11.7 10.7 11.2 
3-6 934 3.9 12.7 11.7 11.1 

6-10 171 7.3 13.2 12.3 12.3 
0-10 11866 1.8 11.6 10.6 11.0 
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Table 4a. Mean and bias values of cloud IWC (gm-3) during April 2010 derived for optically 
thick clouds (MODIS COD>10) above the -20°C altitude level from CALIPSO and CloudSat 
(CC) and from CERES MODIS data from 20-55°N and 65-150°W. The MODIS retrievals were 
derived with the profiling technique using the RUC and the RUC+CC (Hybrid) climatologies of 
S(z*) and constrained with the parameterized MODIS TWP and MODIS-derived cloud 
boundaries.  

COD N 
Mean CC-IWC MODIS-IWC BIAS 
COD C3M Hybrid RUC Hybrid RUC 

10-20 5083 14 0.051 0.047 0.050 0.004 0.001 
20-40 4149 28 0.087 0.083 0.089 0.004 -0.002 
40-80 2635 54 0.154 0.161 0.172 -0.007 -0.018 

80-150 730 106 0.297 0.325 0.323 -0.028 -0.026 
150 965 150 0.568 0.480 0.496 0.088 0.072 

10-150 13562 41 0.141 0.143 0.150 -0.002 -0.009 
 
 
 
 
 
Table 4b. Similar to Table 4a but showing the mean values of IWP (gm-2) retrieved and 
computed above the -20°C altitude level (IWP253). The Hybrid0 column lists the MODIS 
IWP253 computed without employing the TWP parameterization (i.e. assuming that the 
retrieved IWP represents the TWP). For context, the traditional full column MODIS IWP and the 
parameterized TWP derived from MODIS are also shown in columns 4 and 5.  

COD N 
Mean MODIS 

IWP 
MODIS 

TWP 
CC-IWP253 MODIS-IWP253 

COD C3M RUC Hybrid Hybrid0 
10-20 5083 14 310 405 191 157 169 132 
20-40 4149 28 592 849 333 302 324 228 
40-80 2635 54 1132 1754 668 718 767 486 

80-150 730 106 2239 3815 1231 1522 1507 868 
150 965 150 3006 5437 2549 2608 2688 1409 

10-150 13562 41 860 1342 551 557 583 364 
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Table 5. Icing intensity mapping adapted from Politovitch (2003). The original value of 0.066 
was adjusted to 0.093 to separate ‘Light’ from ‘Moderate or Greater’ icing in the satellite 
technique. 

LWC (gm-2) Icing Category 
< 0.01 No icing 

0.010 to 0.017 Trace 
0.017 to 0.030 Trace-light 
0.030 to 0.093* Light 
0.093* to 0.120 Light-moderate 
0.120 to 0.200 Moderate 
0.200 to 0.370 Moderate-heavy 

> 0.370 Heavy 
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Table 6. Example cloud and icing parameters retrieved for two clouds with the same CTH but 
different values of COD. 

Parameter Source Cloud 1 Cloud 2 
COD VISST 50 100 

CER (µm) VISST 50 50 
IWP (gm-2) VISST 1500 3000 
TWP (gm-2) parameterization 2212 5004 
LWP (gm-2) parameterization 321 679 
LWP (gm-2) Profile method 200 362 
CTH (kft) VISST 35.4 35.4 
CBH (kft) VISST 8.9 5.9 
Zfrz (kft) RAOB 3.9 3.9 
ITH (kft) Profile method 17.5 19.0 
IBH (kft) Profile method 8.9 5.9 

Icing Intensity Index (max) Profile method 3 5 
Icing Probability (max) Profile method 0.63 0.9 

FIT Intensity Index Profile method Light MOG 
FIT Probability Index Profile method Medium High 
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Table 7. GOES-13 SFITv2.0 icing detection statistics when compared to PIREPS over the 
eastern CONUS from 1 January - 31 March, 2013. 

Cloud Conditions N PODY Accuracy 
OVC Liquid 5759 99% 90% 

OVC Ice 2713 98% 83% 
All OVC regions 11851 99% 88% 
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Table 8a. GOES-13 SFITv2.0 icing intensity detection statistics when compared to PIREPS over 
the eastern CONUS from 1 January - 31 March, 2013. The most dominant intensity found in the 
satellite region was used when constructing this comparison.  
Cloud Top 
Conditions N PODL PODM Accuracy MOG Icing % 

PIREP SAT 
Liquid 5013 60% 61% 60% 27 46 

Ice  2236 61% 45% 57% 26 40 
 
 
 
Table 8b. GOES-13 SFITv2.0 icing intensity detection statistics when compared to PIREPS over 
the eastern CONUS from 1 January - 31 March, 2013. Regions found to contain both  ‘light’ and 
‘MOG’ conditions from satellite are considered as ‘hits’ in both categories if they both cover 
more than 30% of the 20-km radius area.  
Cloud Top 
Conditions N PODL PODM Accuracy MOG Icing % 

PIREP SAT 
Liquid 5013 76% 66% 73% 27 36 

Ice  2236 80% 47% 72% 26 27 
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List of Acronyms 

 
AD   adding-doubling 
 
AIRMET airmen’s meteorological information 
 
ARM  Atmospheric Radiation Measurement 
 
AWC  Aviation Weather Center 
 
BTD  brightness temperature difference 
 
C3M  CERES/CloudSat/Calipso/MODIS 
 
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization 
 
CBH  cloud base height 
 
CC   CloudSAT/CALIPSO 
 
CER   cloud effective radius 
 
CERES  Clouds and Earth’s Radiant Energy System 
 
CEH   cloud effective height 
 
CET   cloud effective temperature 
 
CIP   Current Icing Potential 
 
COD  cloud optical depth 
 
CONUS contiguous United States 
 
CPR   Cloud Profiling Radar 
 
CTH   cloud top height 
 
CTP   cloud top pressure 
 
CTT  cloud top temperature 
 
CWC   cloud water content 
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CWP   cloud water path 
 
DARDAR raDAR/liDAR 
 
DOE  Department of Energy 
 
DSS  decision support systems 
 
ECMWF European Center for Medium-Range Weather 
 
ESRL  Earth Systems Research Laboratory 
 
FAA  Federal Aviation Administration 
 
FAR   false alarm rate 
 
FIT   flight icing threat 
 
FSLW  fraction of super-cooled liquid water 
 
GA   general aviation 
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ABSTRACT

An algorithm is developed to determine the flight icing threat to aircraft utilizing quantitative information

on clouds derived from meteorological satellite data as input. Algorithm inputs include the satellite-derived

cloud-top temperature, thermodynamic phase, water path, and effective droplet size. The icing-top and -base

altitude boundaries are estimated from the satellite-derived cloud-top and -base altitudes using the freezing

level obtained from numerical weather analyses or a lapse-rate approach. The product is available at the

nominal resolution of the satellite pixel. Aircraft pilot reports (PIREPs) over the United States and southern

Canada provide direct observations of icing and are used extensively in the algorithm development and

validation on the basis of correlations with Geostationary Operational Environmental Satellite imager data.

Verification studies using PIREPs, Tropospheric AirborneMeteorological Data Reporting, and NASA Icing

Remote Sensing System data indicate that the satellite algorithm performs reasonably well, particularly

during the daytime. The algorithm is currently being run routinely using data taken from a variety of satellites

across the globe and is providing useful information on icing conditions at high spatial and temporal reso-

lutions that are unavailable from any other source.

1. Introduction

It is natural for clouds to contain supercooled liquid

water (SLW) droplets at altitudes where the air tem-

perature is below freezing. When SLW comes in contact

with a hard surface such as the frame of an aircraft, it

freezes, thereby icing the airframe. As ice accumulates

on an aircraft, it alters the airflow, which can increase

drag and reduce the ability of the airframe to create lift,

leading to control problems with potentially disastrous

consequences. Over the last half-century, a significant

percentage of weather-related aviation accidents have

been attributed to icing (National Aviation Safety Data

Analysis Center 2005). Typically, the flight icing threat

(FIT) to aircraft is reduced by avoidance or by protecting

the aircraft with deicing and/or anti-icing equipment.

Severe icing can overwhelm an aircraft’s icing pro-

tection system, however. Model analyses, forecasts, and

pilot reports (PIREPs) currently constitute much of the

database available to pilots for assessing the icing con-

ditions in a particular area. Such data may be uncertain

or sparsely available. Icing conditions can be highly

variable, often occurring in small areas that cannot be

resolved with current icing diagnosis and forecasting

methods, which tend to overestimate the areal coverage

of the FIT. Thus, avoidance can be expensive, resulting

in significant increases in flight time or delays on the

ground. Although there have been improvements in

systems to mitigate aircraft icing, no aspect of aircraft

operations is immune to the threat.

The intensity of aircraft icing depends on meteoro-

logical factors, including the cloud temperature, liquid
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water content, and droplet size (Rasmussen et al. 1992),

and the level of severity depends on the intensity as well

as on characteristics of the airframe and flight parame-

ters. Because it is possible to infer these meteorological

factors, or closely related cloud parameters, from sat-

ellite data (Minnis et al. 1995, 2004, 2011a), and because

SLW is often found to reside in the top several hundred

meters of cloud layers (Rauber and Tokay 1991), satel-

lite data can be used advantageously to diagnose icing

conditions. Curry and Liu (1992) developed an icing

product that is based on cloud parameters derived for

SLW clouds using microwave satellite remote sensing

data. This technique is limited to the data with relatively

low spatial and temporal resolution taken over oceanic

regions from spaceborne meteorological microwave

sensors, and this is perhaps most relevant for military

applications. Ellrod and Nelson (1996) developed a

multispectral thresholding technique using Geosta-

tionary Operational Environmental Satellite (GOES)

imager data to discriminate clouds likely to be com-

posed of SLW at cloud top. That product was later en-

hanced with estimates of cloud-top altitude to provide

an upper altitude boundary for the icing layer (Ellrod

and Bailey 2007), but no information on the base alti-

tude or icing intensity was determined. Thompson et al.

(1997) used satellite data to improve icing diagnoses on

the basis of numerical weather analyses by eliminating

areas with warm cloud tops.

Bernstein et al. (2005) describe methods to identify

and forecast areas with potential aircraft icing condi-

tions by blending relevant data from multiple sources

such as satellite, surface, radar, lightning, and routine

PIREPs with model forecasts of temperature, relative

humidity, SLW, and vertical velocity. The current and

forecast icing products (CIP and FIP, respectively) re-

sulting from this comprehensive approach are proving

useful to the aviation community and are available over

the contiguous United States (CONUS) and southern

Canada in near–real time as supplementary information

at the National Oceanic and Atmospheric Administra-

tion (NOAA) Aviation Weather Center. Although re-

search is under way for incorporating satellite-derived

cloud properties in the CIP (Haggerty et al. 2008), the

current version only uses satellite data in a rudimentary

way as in Thompson et al. (1997). Smith et al. (2000)

employed a theoretically based cloud parameter re-

trieval system to identify SLW clouds and found excel-

lent correspondence with icing PIREPs provided that

high-level ice clouds did not obscure the satellite field of

view. Smith et al. (2003) found reasonably good corre-

spondence between the cloud liquid water path (LWP)

and effective radius Re derived for SLW clouds from

GOES-8 data and similar parameters derived from

surface-based remote sensors and aircraft in situ mea-

surements. They also found a weak correlation between

the LWP and PIREP icing intensity. Minnis et al. (2004)

exploited these relationships and developed a satellite-

based icing algorithm that is based on satellite-derived

cloud parameters. Bernstein et al. (2006) found that it

was particularly useful for directing a research aircraft

into icing conditions. That algorithm was selected as the

prototype candidate algorithm for the NOAAGOES-R

program. NOAA is developing a suite of algorithms to

derive geophysical parameters from its next-generation

geostationary satellite system to improve weather fore-

casting and diagnoses of hazardous weather. Under

sponsorship by the GOES-R Algorithm Working

Group, an advanced version of the algorithm has been

developed, demonstrated, tested, and delivered to the

GOES-R program office.

The purpose of this paper is to describe the first-

generation FIT algorithm developed for GOES-R and

efforts to validate and demonstrate the potential utility

to the aviation community using current GOES data.

The theoretical basis for the algorithm is discussed, and

the current formulation is described. The satellite-based

icing diagnoses are compared with icing PIREPs, Tro-

pospheric Airborne Meteorological Data Reporting

(TAMDAR), and National Aeronautics and Space

Administration (NASA) Icing Remote Sensing System

(NIRSS) data. The paper concludes with a summary of

the validation work and expectations for future im-

provements. Note that the algorithm and nomenclature

presented here refer to the icing hazard associated with

naturally occurring SLW in the atmosphere. A more

mysterious icing hazard known to cause jet engine

power loss and damage as a result of cloud ice particle

ingestion (e.g., Mason et al. 2006) is a different phe-

nomenon that is being addressed elsewhere and in

future studies.

2. Data

Although aircraft icing conditions can form anywhere,

they are most commonly found in two geographical

regions over North America (Bernstein et al. 2007). The

first includes the Pacific Northwest, western British

Columbia in Canada, and Alaska. The second extends

from the Canadian Maritimes stretching west and

southwest to encompass the Great Lakes region, Ohio

River Valley, and Hudson Bay. Much of this area is

within the observation domain of the GOES imagers

(GOES-W and GOES-E), which are well suited to

monitor the evolution of clouds and associated weather

conditions because of their relatively high spatial and

temporal resolutions, nominally 4 km (1 km) in the
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infrared (visible), and every 15 min. There fortunately

are a number of other observing systems in this domain

that characterize icing conditions that can be used to

develop, demonstrate, and corroborate the satellite-

based FIT. Icing PIREPs, TAMDAR, and NIRSS, re-

spectively, offer direct subjective, direct objective, and

ground-based remote observations of icing conditions.

These data and their associated products are described

in more detail below.

a. GOES-derived cloud products

For over a decade, NASA Langley Research Center

(LaRC) has been routinely deriving cloud parameters

from GOES imager data and has made these products

available to the scientific and weather forecasting com-

munities (Minnis et al. 2008a). The cloud retrieval

methods were developed for application to the Moder-

ate Resolution Imaging Spectroradiometer (MODIS)

for the Clouds and the Earth’s Radiant Energy System

(CERES) global climate program (Minnis et al. 2011a)

and have been adapted for application to GOES data

beginning with GOES-8 in the late 1990s. The primary

algorithms used to derive cloud properties from GOES

radiance data are the visible–infrared–solar-infrared–

split-window technique (VISST) and solar-infrared–

infrared–split-window technique (SIST). The VISST

operates during the daytime using the 0.65-, 3.9-, 11-,

and 12- (or 13.3) mm channels, whereas the SIST oper-

ates at night using the 3.9-, 11-, and 12- (or 13.3) mm

channels. Cloudy pixels are determined using the

method described by Minnis et al. (2008b). Cloud pa-

rameters are derived for the cloudy pixels using a set of

parameterizations of the Earth–atmosphere solar re-

flectance (during daytime) and infrared emittance (day

and night) models that incorporate cloud contributions

for each relevant wavelength to match the observed

satellite radiances with radiative transfer calculations

using the assumption that each cloud layer is composed

of either ice crystals or water droplets (Minnis et al.

2011a). In the real-time processing system, the GOES

imager data are sampled from 4 km to 8 km to reduce

the latency in producing the cloud products that is due to

limited computational resources. In addition to LWP

and Re, the GOES-derived cloud products (GDCP) in-

clude the cloud phase, effective ice particle diameterDe,

ice water path (IWP), optical depth (COD), effective

temperature Tc, height Zc, and pressure Pc; cloud

thickness DZ; and cloud-top height Zt and pressure Pt.

The cloud optical properties can be derived for a wide

range of cloud thicknesses during the daytime since the

solar reflectance at visible wavelengths is sensitive to

changes in COD from values of less than 1 to values over

100. Since only infrared channels are available from

GOES at night, there is little sensitivity to variations in

COD for optically thick clouds. Thus, at night, cloud

optical properties are only derived for optically thin

clouds (COD , 6).

The LaRC CERES and GOES cloud products have

been rigorously validated with cloud parameters derived

from ground-based remote sensing and in situ data col-

lected at the U.S. Department of Energy (DOE) At-

mospheric Radiation Measurement (ARM) Program

sites (Dong et al. 2002, 2008; Smith et al. 2008, Xi et al.

2010, and others). They have also recently been favor-

ably compared to cloud parameters derived from active

remote sensors aboard the Ice, Cloud, and Land Ele-

vation Satellite (ICESat), the Cloud–Aerosol Lidar and

Infrared Pathfinder Satellite Observations (CALIPSO)

and CloudSat satellites (e.g., Minnis et al. 2008c, 2011b).

An example of the LaRC cloud products derived from

GOES-10 and GOES-12 is shown in Fig. 1, which de-

picts the retrieved cloud-top phase, Zt, COD, Re, LWP,

and the cloud-base altitude Zb, which is from the dif-

ference between Zt and DZ. These parameters provide

unique information about clouds that can be used to

infer the potential for aircraft icing. For example, the

cloud-top temperature (not shown) and cloud-top phase

can be used to detect the presence of SLW. In this ex-

ample, a large area of SLW (denoted by the cyan color in

Fig. 1a) is detected over much of the upper Midwest and

southern Canada in association with a storm system

centered over the Great Lakes. The associated SLW

droplet sizes and their densities can be inferred from the

Re and LWP images in Figs. 1d and 1e while Zt and Zb,

shown in Figs. 1b and 1f, respectively, provide upper and

lower altitude boundaries for the potential icing layers.

These satellite-derived parameters are critical inputs to

the FIT algorithm described below.

b. Icing PIREPs

PIREPs constitute the most widely available direct

observations of in-flight icing conditions, particularly

over the CONUS, and thus are used extensively in al-

gorithm development and validation despite the fact

that they have known deficiencies (Kane et al. 1998).

They are spatially and temporally biased, and the biases

are not systematic. Many years of experience with icing

research aircraft, from which icing PIREPs were rou-

tinely filed, indicate that geolocation errors are on the

order of 10–20 km [F. McDonough, University Corpo-

ration for Atmospheric Research (UCAR), 2010, per-

sonal communication]. PIREPs include intensity reports,

which should be useful for validating the satellite algo-

rithm. The intensity reports are subjective, however, and

are based on pilot experience as well as on airframe and

flight characteristics, and thus they can be difficult to
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interpret. A typical distribution of icing-intensity PIREPs

shown in Fig. 2 for two winter periods over the CONUS

indicates that most of the positive reports fall into only

two of the eight possible intensity categories and that

there are relatively few negative (‘‘no icing’’) re-

ports. Icing PIREPs have been found to be useful

for validating icing detection (Smith et al. 2000) but

are inappropriate to compute standard measures of

FIG. 1. Select cloud parameters derived from GOES-E and GOES-W at 1745 UTC 8 Nov 2008: (a) cloud-top phase, (b) cloud-top

altitude (kft; 1 ft 5 0.3048 m), (c) COD, (d) effective droplet size (mm) for liquid clouds, (e) LWP (g m22), and (f) base altitude (kft).

These and other satellite-derived products are available online (http://angler.larc.nasa.gov).
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overwarning, such as the false-alarm ratio (FAR; Brown

and Young 2000).

c. TAMDAR

TAMDAR is the sensor currently deployed on ap-

proximately 400 commercial aircraft operating over the

CONUS, Alaska, and Canada. TAMDAR is a low-cost

sensor that was developed by AirDat, LLC, for NASA.

It is designed tomeasure and report winds, temperature,

humidity, turbulence, and icing from regional commer-

cial aircraft (Daniels 2002). The TAMDAR icing sensor

contains two independent infrared emitter–detector

pairs mounted on the probe to detect ice accretion. The

accretion of at least 0.5 mm of ice on the leading edge

surface will block the beams and result in a positive

detection. When ice is detected, internal heaters

mounted within the probe melt the ice and the mea-

surement cycle repeats. The heaters are powered for at

least 1 min and the deicing cycle occurs each time ice is

detected. The icing data are given as yes (icing) or no

(no icing) reports. Thus, TAMDAR provides a direct,

objective measure of the occurrence of in-cloud icing.

Potential information on the icing intensity is not cur-

rently being extracted from the measurements. Data

collected during the Great Lakes Fleet Experiment

(GLFE) in 2005 are analyzed here to provide an initial

assessment of their utility for validating the satellite

FIT. The current TAMDAR deployment has shifted to

include the western states and Alaska. These data will

be analyzed in a future study.

d. NIRSS

The NIRSS has been collecting valuable information

on icing conditions since 2005 at the NASA Glenn Re-

search Center in Cleveland, Ohio. This location is well

situated for observing icing conditions because it lies in

the heart of a climatological icing bull’s-eye (Bernstein

et al. 2007). The NIRSS was developed to demonstrate

a ground-based remote sensing system concept that

could provide accurate detection and warning of in-

flight icing conditions in the near-airport environment.

The system fuses data from radar, lidar, and multifre-

quency microwave radiometer sensors to quantify the

icing environment and compute the icing hazard

(Reehorst et al. 2009) on the basis of the expected ice

accretion severity for the measured environment

(Politovitch 2003). Although the system does not mea-

sure icing directly, this remote sensing concept appears

to offer some advantages for satellite validation that are

not found elsewhere. For example, it appears that these

unique data could help to quantify the FIT algorithm

FAR, which cannot be done reliably with PIREPs or

TAMDARdata. Several years of NIRSS data have been

analyzed, and comparisons with the FIT derived from

GOES are presented below.

3. Satellite methods

The potential for in-cloud aircraft icing and its se-

verity depend on many factors related to the particular

aircraft and the weather conditions. Some aircraft will

accumulate ice in certain conditions while other aircraft

will remain ice free in the same cloud. These aircraft-

related factors are not considered here. Meteorological

factors that contribute to icing intensity and severity

include the concentration of supercooled water droplets

and the droplet sizes. In general, larger droplets and/or

larger concentrations of droplets or higher liquid water

content (LWC) contribute to more severe icing. The

satellite-derived Re is related to the cloud droplet sizes

while the derived LWP is related to the concentration

since it is an estimate of the vertically integrated LWC.

Correlations found between the satellite-derived LWP

andRewith icing PIREPs (Smith et al. 2003;Minnis et al.

2004) suggest that some information on icing intensity

may be contained in the satellite data. The current

version of the FIT algorithm has been developed 1) to

exploit these relationships during the daytime for clouds

that can be determined to pose an icing threat to aircraft

because of the presence of SLW and 2) to take advan-

tage of the capability to resolve highly variable cloud

properties with high-resolution satellite data, as de-

picted in Fig. 1.

FIG. 2. PIREP icing intensity for twowinter periods (November–

March 2006/07 and 2007/08) over the CONUS. The classification

strategy for the two-category satellite technique is also indicated.
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a. Icing mask

Because SLW is a prerequisite for aircraft icing, the

first step in the satellite FIT algorithm is to identify

cloudy areas where SLW is likely to exist. An icing mask

is constructed for each geolocated pixel with valid ra-

diance data and for which the cloud algorithms have

been properly executed and have returned valid re-

trievals. The purpose of the icing mask is to determine,

to the extent possible, which cloudy pixels pose an icing

threat to aircraft on the basis of the retrieved cloud-top

temperature Tt, thermodynamic phase, and COD and to

differentiate these pixels from clear and cloudy pixels

that pose no icing threat or for which the icing threat

cannot currently be determined (e.g., pixels composed

of high-altitude optically thick ice-phase-topped clouds,

or multilayered thin-ice-cloud-over-thick-liquid-cloud

systems). The simple logic adopted to map the cloud-top

phase and COD to the icing mask is shown in Table 1. A

Tt 5 272 K is used to distinguish warm water clouds

from SLW clouds. For SLW clouds, a COD threshold of

1.0 is chosen to eliminate the very thinnest clouds as-

sociatedwith very lowLWCvalues from the icing threat.

For ice-phase-topped clouds, a COD threshold of 6.0 is

used to eliminate thin clouds that are unlikely to overlap

SLW clouds, while the icing threat for optically thicker

clouds (COD. 6), which may or may not overlap SLW

clouds, is considered to be unknown. The icing mask

derived using the data from Fig. 1 is shown in Fig. 3

along with the icing intensity reported by pilots near the

same time. Good correspondence is apparent between

the icing PIREPs and the cyan areas representing po-

tential icing conditions in the satellite-derived icing

mask. Areas where there is no icing and where the icing

threat cannot be determined are denoted by the gray

and white colors, respectively.

b. Supercooled liquid water path

A potential issue in using an integral parameter such

as the LWP as a proxy for icing in clouds with SLW tops

is that it may include the mass of warm cloud water for

clouds that extend to altitudes below the freezing level.

A simple approach is adopted to estimate the super-

cooled fraction of the total LWP (SLWP) to eliminate

the warm cloud mass from the icing threat. The ap-

proach requires knowledge of the cloud geometric

thickness, the freezing level, and the vertical distribution

of liquidwater. The freezing levelZfr is obtained from the

satellite-derived Tt and Zt, assuming a moist-adiabatic

lapse rate:

Zfr5Zt 1 (Tt 2 273:15K)/6:5. (1)

The cloud geometric thickness DZ is obtained using

empirical formulas that depend on the COD (for water

clouds) as described in Minnis et al. (2011a). For liquid

water clouds,

DZ5 0:39 ln(COD)2 0:01. (2)

TABLE 1. Logic table for mapping the cloud phase and optical

depth products to the icing mask.

Cloud phase COD Icing mask

Clear — No icing

Water All No icing

SLW COD . 1.0 Icing

SLW COD # 1.0 No icing

Ice COD # 6.0 No icing

Ice COD . 6.0 Unknown

FIG. 3. (a) Icing mask at 1745 UTC and (b) corresponding pilot reports of icing intensity from 1600 to 2000 UTC 8

Nov 2008. The PIREP image was obtained online from the NOAA/National Weather Service (NWS) Aviation

Weather Center (http://aviationweather.gov/adds/pireps/java/).
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The minimum allowable DZ is 0.02 km. The cloud-base

altitude Zb is

Zb 5Zt 2DZ . (3)

For this study, a uniform vertical distribution of cloud

liquid water is assumed. Thus, in this version, we define

the SLWP as

SLWP5LWP (Zb$Zfr) and (4)

SLWP5LWP(Zt 2Zfr)/DZ (Zb ,Zfr) . (5)

c. Icing probability and intensity

Because of the nature of icing PIREPs and, in par-

ticular, of the fact that most positive icing-intensity re-

ports fall into just two of the eight available intensity

categories (light and moderate), a strategy is adopted to

recategorize the eight intensity levels into two broader

categories to serve as a more realistic target for the in-

tensity component of the satellite algorithm. Hereinaf-

ter, ‘‘light’’ icing will be used to refer to reports in the

first three PIREP intensity categories (trace, trace–light,

and light), and ‘‘moderate or greater’’ (MOG) icing

will refer to the other categories (light–moderate,

moderate, moderate–heavy, heavy, and severe), as

indicated in Fig. 2.

The icing PIREPs shown in Fig. 2 were matched with

the coincident GDCP derived from GOES-11 and

GOES-12 data taken over the CONUS to find re-

lationships between icing and the satellite-derived cloud

properties. Given the uncertainties in the PIREP loca-

tions, the satellite results were averaged in a 20-km-

radius region centered at the location of each icing

PIREP (about twenty-five 8-km pixels). This analysis

was restricted to overcast SLW scenes as determined by

the LaRC cloud-phase retrieval and to daytime [solar

zenith angle (SZA) , 828] data. Figure 4 depicts the

frequency of occurrence of none, light, and MOG icing

reports as a function of the GOES-derived SLWP. The

results from the 1359 matches are binned in increments

of 100 g m22. As SLWP increases, the number of negative

and light icing reports decreases while the number of

moderate or greater reports increases. Despite the

aforementioned uncertainties associated with icing

PIREPs and their superposition on high-resolution cloud

fields such as the GOES-derived SLWP, which may be

highly variable, the results in Fig. 4 are encouraging.

Moreover, they are physically realistic considering that

larger values of LWP are likely to be associated with

larger values of LWC and/or larger cloud thickness.

Thicker SLW clouds may be associated with an increased

icing threat because of the likelihood that they increase

the aircraft’s exposure time to SLW as it passes through

the cloud.

Using the data in Fig. 4, the probability of icing was

computed as a function of SLWP. Those values were

multiplied by the probability of icing found from the

data for values of Re 5 5 mm (composed of data with

Re , 8 mm) and Re 5 16 mm (composed of data with

Re $ 16 mm). These two sets of data were normalized

to yield a 100% probability of icing for SLWP 5
1050 g m22 and Re 5 16 mm. These threshold values

were chosen somewhat arbitrarily on the basis of visual

interpretation of the data, since more definitive values

could not be determined empirically. Thus, it is assumed

that the combination of SLWP andRe values at or above

these thresholds yields a 100% probability for icing. The

probabilities and best-fit curves for the two values of Re,

intended to represent the upper and lower limits, are

shown in Fig. 5. In this procedure, the negative icing

reports were duplicated several times to account for the

sampling bias relative to positive icing reports that is

apparent in Fig. 2. This bias in negative reports is due to

the lack of incentive to report no icing. The results

shown in Fig. 5 are consistent with our theoretical un-

derstanding of icing, indicating an increased likelihood

of icing with increased SLWP and Re. From these re-

sults, the icing probability (IP) is formulated in the FIT

algorithm as

IP5 0:252 log10(SLWP)2 0:110 (Re5 5mm) and

(6)

FIG. 4. Relative frequency of icing PIREPs vs GOES-derived

SLWP for two winter periods (November–March 2006/07 and

2007/08) over the CONUS. The two-bin PIREP intensity cate-

gories are denoted as light and MOG, as in Fig. 2.
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IP5 0:333 log10(SLWP)2 0:015 (Re 5 16mm). (7)

Linear interpolation between the results of (6) and (7) is

used for pixels withRe between 5 and 16 mm. Pixels with

larger or smaller values of Re are assigned the appro-

priate extreme value. Values of IP, 0.4 are classified as

low probability. For values between 0.4 and 0.7, pixels

are classified as medium probability, and values ex-

ceeding 0.7 are classified as high probability.

Table 2 lists the results of a statistical analysis per-

formed on the matched satellite and icing PIREP data-

set to determine any relationships between the GDCP

and icing intensity. Themean and standard deviation for

a number of satellite-derived cloud parameters are

shown. When the values were computed with all of the

matched data, themean results indicate that, on average,

there is little dependency found between icing-intensity

PIREPs and Re. There are several possible explanations

for this result. In this analysis, Re has been derived from

the highly absorbing 3.9-mm channel, available on

current GOES, which is mostly sensitive to cloud

droplets very close to cloud top. It is possible that the

cloud-top information extracted from this channel is

not very representative of the droplet size spectra

affecting icing conditions as reported by pilots, when

the aircraft is well below cloud top. The scattering

phase function for cloud hydrometeors is also very

sensitive to droplet size when the solar angles and

satellite viewing geometry are such that strong back-

scatter occurs, which may result in larger uncertainties

or noise in the Re retrievals. This phenomenon occurs

in the late morning (early afternoon) for GOES-E

(GOES-W) over the CONUS in the autumn and

winter months when icing is most prevalent. More

work is needed to reduce uncertainties in Re retrievals

using other satellites, multiple-wavelength Re re-

trievals, and perhaps improved forward models to

better understand and quantify any relationships be-

tween Re and aircraft icing. A stronger dependence is

found for the LWP, but there is not much separation

between the mean LWP found for the light and MOG

categories shown in the mean results when using all of

the data.

To reduce the potential ambiguity associated with

temporal and spatial matching errors on the correlations

shown in the results for all data in Table 2, a strategy was

adopted to filter the data. In the filtering procedure, a set

of conservative SLWP thresholds is set for specific

PIREP icing intensities on the basis of the assumption

that the two are positively correlated as shown in Fig. 4.

Thus, in the filtered dataset, the matched data are

eliminated for the following scenarios: 1) all positive

icing reports, if SLWP , 50 g m22; 2) all positive icing

reports with MOG icing intensity, if SLWP ,
200 g m22; 3) all icing reports, if the intensity is less than

light and the SLWP. 750 g m22; and 4) all icing reports

with light or less intensity if SLWP. 1000 g m22. About

20% of the original matched data are absent in the fil-

tered dataset. Much stronger sensitivity to LWP is found

in the filtered dataset (Table 2) since the correlation

FIG. 5. Renormalized probability of in-cloud aircraft icing as

a function of satellite-derived LWP and model fit for two values

of Re.

TABLE 2.Mean and standard deviation (in parentheses) found for satellite-derived cloud parametersmatchedwith icing PIREPs during

winters of 2006/07 and 2007/08 in three categories: 05 no icing, 15 light icing, and 25moderate or greater icing. Results are shown for the

entire matched dataset (‘‘all data’’) and for the filtered dataset (‘‘filtered data’’).

Cloud property

(GOES)

PIREP intensity (all data) PIREP intensity (filtered data)

0 1 2 0 1 2

COD 35.98 (25.41) 42.89 (28.49) 49.60 (29.32) 31.25 (22.52) 35.74 (21.98) 56.71 (27.64)

Re (mm) 11.65 (3.17) 12.03 (3.11) 12.11 (3.02) 11.35 (2.68) 12.00 (3.15) 12.11 (2.95)

LWP (g m22) 460.56 (569.58) 614.21 (653.18) 715.54 (678.19) 321.61 (369.75) 381.67 (317.59) 836.65 (694.14)

SLWP (g m22) 332.31 (444.03) 530.65 (592.64) 671.68 (664.48) 193.16 (160.45) 338.91 (232.74) 805.90 (676.69)

Tc (K) 263.39 (4.44) 262.65 (3.96) 262.05 (3.62) 263.62 (4.45) 262.61 (3.87) 261.84 (3.50)

DZ (km) 1.23 (0.36) 1.34 (0.37) 1.43 (0.36) 1.17 (0.33) 1.27 (0.29) 1.51 (0.34)

No. 90 838 431 79 659 346

OCTOBER 2012 SM I TH ET AL . 1801



between the icing intensity and the LWP has increased.

Also note that the filtered dataset generally produces

much lower LWP standard deviations. From a statisti-

cal point of view, there is arguably good reason to

employ the filtering procedure to both develop and

validate the algorithm, but the procedure is somewhat

arbitrary, and there is no guarantee or requirement that

independent evaluators of the algorithm would also

employ it. Thus, we have developed an approach to

determine intensity thresholds for the current version

of the FIT algorithm using all of the matched (un-

filtered) data. We have, however, chosen to report the

results that are shown in Table 2 to provide the mean

cloud properties found for this icing dataset and to

demonstrate the improved sensitivity of the LWP and

SLWP to icing intensity reported by pilots when

a simple filtering procedure is applied.

The filtering procedure is also employed in our valida-

tion studies (section 4) to help to bound the uncertainties.

For the current algorithm, intensity thresholds were

derived, using the unfiltered dataset, by iteratively de-

termining the SLWP threshold that maximizes both the

probability of detection for the light (PODL) andMOG

(PODM) categories. Different thresholds were derived

for snow and snow-free scenes since the snow albedo

was not accounted for in this version of the LaRC cloud

analyses. The bright snow background could bias the

cloud microphysical property retrievals. An example for

the snow-free dataset is shown in Fig. 6, which indicates

a maximum POD of 0.55 for the two intensity categories

at an SLWP threshold of 379 g m22. Daily snow maps

obtained from the National Snow and Ice Data Center

(now available from the National Ice Center: http://

www.natice.noaa.gov) are used to stratify the matched

satellite–PIREPs dataset for snow and snow-free

scenes. Table 3 summarizes the SLWP thresholds and

the intensity POD (PODL is equal to PODM in this

technique) found following this approach for snow,

snow-free, and all surfaces.

d. Algorithm output

The satellite-derived icing mask, probability, and in-

tensity are combined to form the FIT index, depicted in

Table 4, which is the primary output of the FIT algorithm.

The FIT index is color coded for display purposes and is

illustrated in Fig. 7 for the 8 November 2008 case. In

general, there is good correspondence between the FIT

output and the icing-intensity PIREPs shown in Fig. 3b.

That is, warmer colors associated with more severe icing

and the cooler colors associated with less severe or no

icing tend to match reasonably well on a large scale. It is

apparent how much more information the current FIT

product can provide during the daytime when compared

with a binary yes/no icing product (e.g., icing mask in Fig.

3). The approach described here may resolve some of the

natural variability in the FIT to a significant degree but, of

course, needs to be validated to the extent possible.

4. Verification

To help to gain an understanding of the potential

utility of the satellite-based FIT product to the aviation

FIG. 6. Probabilities of detecting light andMOG icing conditions

as a function of the GOES-derived SLWP in snow-free conditions

during the winters of 2006/07 and 2007/08.

TABLE 3. The two-category intensity thresholds and probability

of detection found using the satellite-derived SLWP over snow

(100% coverage), snow-free (0% coverage), and all surfaces for

consecutive winters (November–March) between 2006 and 2008.

Surface SLWP (g m22) POD (%) N

All 405 58 2341

Snow 475 63 735

No snow 379 55 1310

TABLE 4. FIT index output from the satellite FIT algorithm.

FIT index Description

27 No retrieval/bad data

29 Missing data/other

0 No icing

1 Unknown

2 Low probability of light icing (daytime

only: SZA , 828)
3 Medium probability of light icing (daytime

only: SZA , 828)
4 High probability of light icing (daytime

only: SZA , 828)
5 High probability of MOG icing (daytime

only: SZA , 828)
6 Icing possible (Nighttime only: SZA $ 828)
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community, icing information from PIREPs, TAMDAR,

and NIRSS is used for intercomparison. Each dataset

has unique advantages and disadvantages (described

briefly in section 2), with their own associated un-

certainties that may not be well understood in some

cases. Because the satellite FIT algorithm has no vertical

resolution and produces a bulk icing index limited to

SLW-topped clouds (generally lower-level clouds with

limited vertical extent that are not obscured by high-

level clouds), and considering the uncertainties in

satellite-derived boundary layer cloud heights and the

uncertainties associated with the validation data, we have

excluded altitude in our validation thus far. Thematching

approach that has been adopted here ensures to the ex-

tent possible that the satellite and validation data rep-

resent the same cloud volume. It is also important to

emphasize again that aircraft icing is not just a meteo-

rological phenomenon, but depends on characteristics of

the airframe, flight trajectory, residence time, and other

factors. Furthermore, there is currently no accepted

definition for icing severity that is based on cloud mi-

crophysical parameters (e.g., LWC or Re) or the accre-

tion rate on an airframe (M. Politovitch, UCAR, 2010,

personal communication).

Despite the somewhat ill-defined nature of aircraft

icing, a method was developed to quantify the potential

accuracy of the satellite product by correlating it with

icing information extracted from PIREPs, TAMDAR,

and NIRSS data. The data were matched in time and

space for overcast conditions to eliminate any ambi-

guity that might arise in partly cloudy conditions. Two-

by-two contingency tables are constructed to help to

quantify the intercomparisons with standard skill

scores (e.g., Wilks 2006). Each cell in the table provides

the frequency with which a particular observation or

estimate occurs at a specific threshold. Two sets of

contingency tables are formed. The first table is com-

posed of yes or no icing frequencies to test the icing-

detection capability, as in Table 5. The second table is

composed of light or MOG icing frequencies to test the

icing-intensity capability, as in Table 6. The set of skill

scores computed, and discussed below, is defined in

Table 7.

a. Comparisons with icing PIREPs

The FIT derived from GOES-11 and GOES-12 was

compared with icing PIREPs over the CONUS between

FIG. 7. Flight icing threat derived from GOES at 1745 UTC 8 Nov 2008.

TABLE 5. Contingency table describing possible outcomes for icing

detection.

Icing detected by satellite

Icing observed

Yes No

Yes h (hit) f (false alarm)

No m (miss) n (correct negatives)
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1 November and 31 March 2008–09 and 2009–10. This

dataset is independent from that used in the algorithm

development (2006–08). In this analysis, all pixels within

20 km and 15 min of each icing PIREP were matched

under the condition that the 20-km-radius region was

completely overcast. Regions containing any SLW are

considered to be positive detections from GOES. This

strategy resulted in 22 551 and 9851 matches during the

daytime and nighttime, respectively. The skill in de-

tecting icing conditions was determined from the con-

tingency tables shown in Tables 8 and 9. The PODY,

PODN, and accuracy are 62%, 42% and 61% (56%,

54%, and 56%), respectively, during daytime (night-

time). False detections are common, but compose only

a small percentage of the total (FAR5 5%–6%). These

results are nearly identical to those found by Ellrod

and Bailey (2007) during wintertime. The large number

of misses is due to the fact that this version of the sat-

ellite FIT algorithm, like that of Ellrod and Bailey

(2007), cannot detect icing conditions below high-level

ice clouds. When these ‘‘undetectable’’ conditions are

eliminated from the validation dataset, the satellite FIT

algorithm performance is much better. Tables 10 and 11

depict the contingency tables for the same data used to

construct Tables 8 and 9 but excluding the cases with

high optically thick ice cloud. Under these conditions,

the PODY, PODN, and accuracy are found to be 98%,

6%, and 93% (64%, 49%, and 63%), respectively, dur-

ing daytime (nighttime). It is not possible to adequately

quantify false alarms using icing PIREPs because of the

low bias in ‘‘no icing’’ observations (Brown and Young

2000). PODN is also highly uncertain and misleading

for the same reason. The high values of PODY and

accuracy found for the daytime data indicate that the

satellite technique has an excellent detection capability

relative to positive icing PIREPs, provided high clouds

do not obscure the satellite view. The skill at night is

good but is less than that found during the daytime be-

cause of the availability of just a few infrared channels

that have poor sensitivity to optically thick cloud mi-

crophysical properties.

A contingency table was formed to test the two-

category intensity component of the FIT algorithm

during daytime for overcast SLW regions (number N 5
5711) and is shown in Table 12. The probabilities of

detecting light (PODL) and moderate or greater

(PODM) icing conditions are 59% and 57%, re-

spectively, and the accuracy is 58%. Considering the

uncertainties associated with icing PIREPs and the as-

sociated difficulties in accurately matching the reports to

satellite data, these comparison results are probably

reasonable. The data were also stratified for snow and

snow-free scenes. The intensity accuracy was also found

to be 57% for both, which is an encouraging consis-

tency indicating that the LWP thresholds developed

with the 2006–08 data (Table 3) worked relatively well

for the 2008–10 dataset. Better results were found using

the filtering procedure described in section 3, which

eliminates about 15% of, what appear to be, the more

ambiguous data and yields a PODL, a PODM, and an

intensity accuracy of 67%, 69%, and 67% respectively.

Figure 8 depicts a frequency histogram of cloud-top

temperatures for all of the matched satellite and icing

PIREP data used in this study between November 2006

and March 2010. The percentage of clouds with bases

estimated to be below the freezing level is indicated for

each 5-K temperature bin and is found to occur about

25% of the time, overall. To gauge the impact of our

strategy to partition the cloud mass for the subfreezing

portion (SLWP), the algorithm was also evaluated with

data using intensity thresholds developed in the same

manner described earlier but using the LWP rather than

the SLWP. The overall improvement in the intensity

accuracy using the SLWP approach is just a few percent

TABLE 6. As in Table 5, but for icing intensity.

Satellite intensity

Observed intensity

Light MOG

Light hL (light hit) mM (MOG miss)

MOG mL (light miss) hM (MOG hit)

TABLE 7. Contingency-table scoring definitions.

Score Meaning Formula

PODY Probability of detecting icing h/(h 1 m)

PODN Probability of detecting no icing n/(f 1 n)

FAR False-alarm ratio f/(h 1f)

Accuracy Icing-detection accuracy (h 1 n)/(h 1 m 1 f 1 n)

TSS True skill score PODY 1 (1 2 PODN).

PODL Probability of detecting light icing hL/(hL 1 mL)

PODM Probability of detecting MOG icing hM/(hM 1mM)

Intensity accuracy Icing-intensity accuracy (hL 1 hM)/(hL 1 mL 1 mM 1 hM)
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when evaluating all of the data. However, when con-

sidering only the data for which SLWP and LWP differ

(occurs 25% of the time), a relative accuracy im-

provement of about 20% is realized using the SLWP

approach.

b. Comparisons with NIRSS

The NIRSS icing retrieval uses ground-based remote

sensing data to estimate the FIT over a single surface site

(Reehorst et al. 2009) in Cleveland, Ohio. Although

icing is not measured directly, NIRSS provides an ob-

jective estimate using active and passive remote sensors

(i.e., microwave radiometer, cloud radar, and ceilome-

ter) and thus has the capability to provide vertical res-

olution, with some assumptions. In theNIRSS approach,

the vertical distribution of supercooled liquid water is

estimated using climatological profiles that are based

partially on experience and measurements taken from

the NASA Glenn Twin Otter during icing research air-

craft missions, and using the cloud radar reflectivity

measured at the site. The profiles are constrained with

the integrated liquid water (LWP) inferred from the

microwave radiometer and cloud boundaries derived

from the radar and ceilometer. For the subfreezing

portion of the cloud, LWC is converted to eight levels of

icing intensity with relationships that were developed

from an airfoil modeling study (Politovitch 2003). An

example of the NIRSS icing retrieval is shown in Fig. 9

along with the corresponding cloud boundaries and

FIT derived from GOES on 12 February 2010. For this

case, there is reasonably good agreement between the

satellite-derived cloud boundaries and FIT with the

NIRSS results.

Three years of NIRSS icing retrievals taken between

2008 and 2010 were analyzed and matched with the

satellite data when the GDCP indicated overcast con-

ditions. The icing threat was estimated from the GOES

data using pixels within 20 km of the site. A bulk icing

intensity was computed from the NIRSS results, for di-

rect comparison with the satellite FIT, by averaging the

vertical mean NIRSS LWC over a 20-min period cen-

tered at the time when GOES-12 scanned Cleveland.

The mean LWC was converted to icing intensity using

the NIRSS conversion factors and the same categorical

partitioning shown in Fig. 2. Contingency tables were

constructed as before to evaluate the estimates of sat-

ellite icing detection and intensity relative to the NIRSS

data. For this dataset, there were 885 matches, including

174 cases with high ice cloud obscuration. PODY,

PODN, FAR and TSS were found to be 76%, 62%,

10%, and 38%, respectively. With respect to NIRSS

data, the FIT-algorithm icing-detection accuracy is 73%.

As before, eliminating the ‘‘unknown’’ cases yielded

different statistics. In that case, the accuracy is 90%, and

the PODY, PODN, FAR, and TSS are found to be

100%, 22%, 10%, and 22%, respectively. The low values

of PODN and TSS are due to the relatively low number

of no-icing cases (most of the NIRSS data were obtained

during winter), and to a significant number of false

alarms due to thin cirrus contamination in the satellite

retrievals. A detailed analysis of the satellite and cloud

radar imagery for the false-alarm points indicated that

many of these cases were thin cirrus over warm water

clouds, which were misclassified as SLW pixels in the

satellite analyses.

The severity component of the FIT algorithmwas also

tested relative to the NIRSS data. The PODL and

PODM were found to be remarkably consistent, with

values of 77% and 78%, respectively. The overall ac-

curacy in the FIT intensity is 77%. These results are

TABLE 8. Frequency of yes/no icing reports found for the

matched GOES–PIREP dataset constructed over consecutive

winters (November–March) between 2008 and 2010 for overcast

regions during daytime.

Icing detected by satellite

Icing observed

Yes No

Yes 13 075 790

No 8107 579

TABLE 9. As in Table 8, but during nighttime.

Icing detected by satellite

Icing observed

Yes No

Yes 5158 273

No 4104 316

TABLE 10. Frequency of yes/no icing reports found for the

matched GOES–PIREP dataset constructed over consecutive

winters (November–March) between 2008 and 2010 for overcast

regions with no high thick clouds during daytime.

Icing detected by satellite

Icing observed

Yes No

Yes 13 075 790

No 237 46

TABLE 11. As in Table 10, but during nighttime.

Icing detected by satellite

Icing observed

Yes No

Yes 5158 273

No 2859 261
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encouraging considering that the FIT algorithm is tuned

to icing PIREPs while the NIRSS intensity is tuned to

an airfoil model, and considering the different sensitiv-

ities and assumptions associated with the satellite and

ground-based remote sensing techniques.

c. Comparisons with TAMDAR

The FIT algorithm was applied to the GDCP derived

from daytimeGOES-12 data from 1 to 26April 2005 and

was compared with TAMDAR data taken during the

GLFE. The pixel-level icing parameters derived from

GOES are averaged, by spatially weighting the four

closest pixels to each TAMDAR observation taken

within 15 min of the satellite observation. There were

440 542 TAMDAR observations, of which 13 321 in-

dicated icing, 8951 indicated that the heater was on so

that icing was not detectable at that time, and the rest

indicated that no icing was observed. Unlike the rela-

tively few PIREPs (most of which are reported during

icing conditions), TAMDAR takes continuous data. As

a result, about 95% of the TAMDAR reports indicate

no icing. Thus, the GOES and TAMDAR compari-

son statistics in the results will be biased toward the

TAMDAR no-icing category if filters are not properly

applied to remove insignificant reports (e.g., from cloud-

free areas).

Figure 10 shows an example of satellite-derived icing

indices compared with the TAMDAR icing indicators

on a Mesaba Airlines flight (with TAMDAR serial

number 247) between 1800 and 1830UTC 22April 2005.

Good agreement is found for this single-layer cloud

case. The satellite FIT is a bulk index for the icing layer

as indicated by the vertical bars. The TAMDAR mea-

surements indicating yes or no icing are also plotted as

a function of altitude. During the majority of the flight

segment, the aircraft was inside the GOES-retrieved

cloud boundaries and reported icing that corresponds

well to the GOES analysis. During the descent below

cloud base, the TAMDAR no longer reported icing

while GOES still detected icing above the aircraft. This

illustrates the need to ensure, to the extent possible, that

only in-cloud TAMDAR reports be compared with the

GOES FIT.

To compare statistically the TAMDAR data with

GOES without biasing the results, only TAMDAR

reports at altitudes within the GOES-derived cloud

boundaries are used. This condition reduced the total

number of daytime TAMDAR reports (with heater

off) to 17 140. This includes 5048 cases in which icing

could not be determined from GOES because of ob-

scuration by high ice clouds. If we classify these points

as no icing from GOES, then the PODY, PODN, ac-

curacy, and FAR are found to be 45%, 67%, 72%, and

85%, respectively. Eliminating the GOES unknown

points yields values of 87%, 49%, 53%, and 85%.

Thus, a reasonable value for PODY (87%) was found

using TAMDAR, which agrees well with the values

found with the other validation datasets, but the re-

maining statistics are relatively poor. This is due to the

high number of false alarms (FAR is 84%), most of

which were determined to arise as a result of in-

accuracies in the cloud altitude boundaries derived

from GOES. Because the retrieved cloud-base and

-top heights have an uncertainty of about 1 km (Smith

et al. 2008), it is likely that many of the TAMDAR no-

icing reports outside of clouds are being included in

the statistics with the GOES icing detections. Thus,

the PODY appears to be the only derived metric with

much value, considering the comparison method used

here. We plan to use the temperature and humidity

profiles in future analyses of TAMDAR data to try

to improve the definition of the actual cloud bound-

aries penetrated by the instrumented aircraft and, it is

TABLE 12. Frequency of the two-category icing intensity found

for the matched GOES–PIREP dataset constructed over consec-

utive winters (November–March) between 2008 and 2010 for re-

gions determined from GOES to contain overcast SLW clouds.

Satellite intensity

Observed intensity

Light MOG

Light 2385 716

MOG 1675 935

FIG. 8. Frequency histogram of cloud-top temperature for all of

the matched satellite and icing PIREP data used in this study be-

tween November 2006 and March 2010. The percentage of clouds

with bases estimated to be below the freezing level is indicated for

each 5-K temperature bin.
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hoped, to improve the utility of TAMDAR data for

satellite validation.

5. Summary

In this paper, a physically based empirical technique

was developed to estimate from satellite data the FIT to

aircraft. The technique is formulated to utilize satellite-

derived cloud products as input, including Tc, cloud-top

phase, LWP, and Re. The satellite-based icing method

has been applied to current GOES data, and the re-

sults were rigorously compared with icing observa-

tions contained in PIREP, TAMDAR, and NIRSS

data. A summary of these comparisons is provided in

Table 13. During the daytime, the satellite icing de-

tection accuracies are found to range from about 60%

to 75% using the various validation sets as ground

truth in all cloud conditions. The results that are based

on comparisons with icing PIREPs are nearly identical

to those found by Ellrod and Bailey (2007), who used

a radiance thresholding technique. Much better results

are obtained if we use the satellite-derived cloud mi-

crophysical properties to screen out the cases obscured

by high ice clouds, since the presence of SLW below

these clouds cannot be inferred with current single-layer

satellite retrieval methods. Excluding these cases yields

accuracies of 90%or better when compared with NIRSS

and PIREPs. The poor accuracy found in the compari-

sons with TAMDAR can be attributed to insufficient

knowledge of when the TAMDAR sensor is reporting

no-icing conditions in cloud rather than in clear air.

From the data shown in Tables 8–11, we estimate that

roughly 35% of atmospheric icing remains undetected

using single-layer techniques, because of high cloud

obscuration. New techniques (e.g., Chang et al. 2010) to

derive cloud properties in some multilayer conditions

[i.e., thin cirrus over lower-level water clouds; see Chang

and Li (2005)] can be exploited to estimate the FIT

below high-level ice clouds with a promising degree of

accuracy. This is a topic for future research that may

FIG. 9. Comparison of flight icing threats derived from NIRSS and GOES for 12 Feb 2010. (top) NIRSS radar

reflectivity and (bottom) icing-intensity profiles with satellite-derived cloud boundary overlay (red and black circles).

Cloud base measured by ceilometer is shown for the NIRSS site (pink squares) and at a nearby NWS Automated

Surface Observing System station (white circles). Vertical and temporal aggregate NIRSS icing is indicated by

colored triangles at the bottom of the bottom panel along with the FIT derived fromGOES, which is indicated by the

colored squares.

OCTOBER 2012 SM I TH ET AL . 1807



further improve the satellite-derived FIT under a wider

range of cloud conditions.

A significant advance in the FIT algorithm developed

here, relative to previous satellite-based icing analyses,

is an estimate of icing probability and intensity that is

based on derived cloud microphysical parameters. The

technique significantly increases the information con-

tent extracted from the satellite observations, providing

an improved dynamic range to the FIT that should be

useful to the aviation community. Relative to icing

PIREPs, the accuracy in the satellite two-category in-

tensity estimates is between 58%and 68%depending on

the degree of filtering used to reduce ambiguities that

are likely due to poor spatial and temporal matching.

Better agreement is found with NIRSS data (77% ac-

curacy), which is also encouraging, keeping in mind that

NIRSS is a ground-based remote sensing system and

does not provide a direct measure of icing intensity. The

results presented here indicate that the satellite method

has significant skill. Considering the somewhat ill-defined

nature of icing intensity and severity, as well as many is-

sues regarding the accuracy of the validation data used to

characterize aircraft icing, it is possible that the practical

utility of the method to the aviation community may be

better than the validation data suggest, but this remains to

be demonstrated.

Newer advanced imagers, with more channels and

improved horizontal resolution and spectral information

similar to that currently available on MODIS, such as

the Visible Imaging Infrared Radiometer Suite on the

Suomi National Polar-Orbiting Partnership, the Spin-

ning Enhanced Visible and Infrared Imager (SEVIRI)

on the Meteosat series deployed over Europe, and the

Advanced Baseline Imager planned for GOES-R, are

providing the impetus for research to further advance

satellite-derived cloud characterizations for icing and

other aviation weather hazards. For example, advanced

imagers can provide some capability to improve the

resolution of cloud vertical structure (e.g., Platnick

2000), which has not yet been exploited. It is also

expected that the icing-detection accuracy at night and

during the day/night transition will be somewhat better

than that shown in Table 13 because of the availability of

additional spectral information in the infrared with im-

proved sensitivity to cloud-top phase (Pavolonis 2010).

Despite the inherent bias toward ‘‘positive icing’’ re-

ports found in the validation data used in this study, we

were able to gain some understanding of potential false

alarms, which appear to occur less than 10% of the time.

A significant number of these cases appear to be due to

the inability to detect thin cirrus clouds adequately with

the current GOES imager in multilayer conditions.

Improvements can be expected in the near future that

take advantage of the improved resolution and spectral

information available from advanced imagers, as well

as improved cloud retrieval techniques, including the

multilayer methods currently being developed.

FIG. 10. Comparison of the GOES-derived flight icing threat to

yes/no icing inferred using TAMDAR sensor measurements taken

from a commercial aircraft on 22 Apr 2005 during the GLFE.

TABLE 13. Summary of the FIT capability determined fromGOES when compared with icing PIREP, TAMDAR, and NIRSS data for

all cloud conditions, and under the condition that high-level overcast ice clouds do not obscure the satellite view. The intensity accuracy

was only evaluated in overcast SLW conditions as determined from GOES.

Validation data Day/night

Icing detection

Icing-intensity accuracy (%)

All clouds Unobscured

PODY (%) Accuracy (%) PODY (%) Accuracy (%)

PIREPs Night 56 56 64 63 —

PIREPs Day (all) 62 61 98 93 58

PIREPs Day (filtered) — — — — 67

NIRSS Day 76 73 100 90 77

TAMDAR Day 45 72 87 53 —
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The satellite-based icing product described here, as

well as the icing altitude boundaries derived fromZt,Zb,

and Zfr, provide unique information about icing condi-

tions over broad areas and at resolutions not available

elsewhere that should contribute a substantial en-

hancement in aviation safety to regions susceptible to

heavy supercooled liquid water clouds. These icing

products, as well as many other cloud and radiation

products being derived routinely from operational sat-

ellite data, are available in digital and graphical formats

from NASA (http://angler.larc.nasa.gov).
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